
Universal Memory Automaton
and automated Verilog HDL code generation for a cache coherency snooping protocol

MATTHIAS W. FERTIG∗, HTWG Konstanz University of Applied Sciences, Germany

This paper introduces the concept of Universal Memory Automata (UMA) and automated compilation of
Verilog Hardware Description Language (HDL) code at Register Transfer Level (RTL) from UMA graphs for
digital designs. The idea is based on the observation that Push Down Automata (PDA) [4–6, 9–11, 13] are
able to process the Dyk-Language - commonly known as the balanced bracket problem - with a finite set
of states while Finite State Machines (FSM) [1–3, 7, 8, 12] require an infinite set of states [14]. Since infinite
sets of states are not applicable to real designs, PDAs appear promising for types of problems similar to the
Dyk-Language. PDAs suffer from the problem that complex memory operations need to be emulated by a
specific stack management. The presented UMA therefore extends the PDA by other types of memory, e.g.
Queue, RAM or CAM. Memories that are eligible for UMAs are supposed to have at least one read and one
write port and a one-cycle read/write latency. With their modified state-transfer- and output-function, UMAs
are able to operate user-defined numbers, configurations and types of memories. Proof of concept is given by
an implementation of a cache coherency protocol, i.e. a practical problem in microprocessor design.

CCS Concepts: • Hardware → Combinational circuits; Finite state machines; Sequential circuits;
Hardware description languages and compilation; Sequential synthesis; Reconfigurable logic applica-
tions; High-level and register-transfer level synthesis; Methodologies for EDA; • Theory of computation →
Automata extensions; • Computer systems organization → Processors and memory architectures;

Additional Key Words and Phrases: ACM proceedings, Finite State Machines, Push Down Automata, HDL
Compilation, Digital Design Automation

ACM Reference Format:
Matthias W. Fertig. 2019. Universal Memory Automaton: and automated Verilog HDL code generation for a
cache coherency snooping protocol. 1, 1 (August 2019), 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
1.1 Finite State Machines
In Digital Engineering, Finite State Machines (FSMs) are a standard design element to process
regular languages. They are typically utilized to implement control logic. FSMs are given by a set

FSM = (S ,S0,F ,Σ,Γ,δ ,ω) (1)

where S is a finite set of states, S0 is the initial state, F ⊆ S is a finite set of final states, Σ is the input
alphabet, Γ is the output alphabet, δ is the state transfer function and ω is the output function.

∗Professor of Computer Engineering at the HTWG Konstanz, University of Applied Sciences.

Author’s address: Matthias W. Fertig, HTWG Konstanz University of Applied Sciences, Germany, Alfred Wachtel Str. 8,
Konstanz, Baden-Württemberg, 78462, matthias.fertig@htwg-konstanz.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
XXXX-XXXX/2019/8-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 M.W. Fertig

State transfers are defined by the state transfer function

δ :
{
S × Σ → S
s ′ = δ (s,σ)

(2)

where a destination state s ′ ∈ S is reached from a source state s ∈ S by processing an input σ ∈ Σ.
Outputs are defined by the output function

ω :
{
S × Σ → Γ
γ = ω (s,σ)

(3)

where γ ∈ Γ is an output symbol derived from a state s ∈ S and input σ ∈ Σ. This architecture is
of type Mealy since the output function depends on inputs and states. Moore and Simple Moore
architectures are deduced from simplified output functions. FSMs are called finite because they are
built from a finite set of states, implemented by a state memory. State memory is of size loд2 (NS)
and required in all known FSM architectures, where NS is the number of states in the finite set of
states.

1.2 Push Down Automata
Push Down Automata (PDA), also called Stack Automata, are given by a set

PDA = (S ,S0,F ,Σ,Γ,δ ,ω,A,X) (4)
where common elements equal those of the FSM. X is the stack alphabet (1.2.1) to operate the stack
memory (2.1.2) A.

X = {PUSH (),POP (),TOP (),NOP ()} (5)
The state transfer function of a PDA δ is

δ :
{
S × Σ × X → S × X
(s ′,x) = δ (s,σ ,x)

(6)

where x ∈ X are stack operations andw ∈ Σ∗ is a word on the input alphabet. The output function
of the PDA is

ω :
{
S × Σ × X → Γ × X

(γ ,x) = ω (s,σ ,x)
(7)

1.2.1 Stack alphabet. A set of operations on the stackA. PUSH(A,w) puts an elementw ∈ Σ∗ on the
stack, POP(A) returns the first element from the stack and deletes the first element, TOP(A) returns
the first element and keeps the first element, NOP(A) is a no-operation on the stack, sometimes
called the empty operation. Stack operations are utilized in state-transfer- and output-functions to
conditionally read and write the stack.

2 THE UNIVERSAL MEMORY AUTOMATON
Universal Memory Automata (UMA) are an innovative concept for operating multiple (parallel)
memories in a finite state graph. While FSMs utilize state memory and PDAs utilize state and
stack memory only, UMAs extend the state memory by multiple (k) memories of selectable and
configurable type. Eligible types of memories in this paper are last-in first-out (Stack) A like in
PDAs, first-in first-out memory (Queue)Q, random-access (RAM) R and content-addressable (CAM)
memory C. UMAs allow an arbitrary number and a user-defined configuration of those memories.
PDAs are of course able to emulate all these types of memory by a specific stack management, but
the additional effort makes PDAs more of a theoretic model of computation than an applicable
tool for real designs. If several and potentially different types of memories are desired, the effort to
model those with the single stack of a PDA becomes even higher. To resolve this issue, this paper

, Vol. 1, No. 1, Article . Publication date: August 2019.

Universal Memory Automaton 3

introduces the idea of operating multiple memories of variable type and configuration, which is
particularly relevant for real applications. This is performed by the UMA.

Universal Memory Automata (UMA) are given by a set

UMA = (S ,S0,F ,Σ,Γ,δ ,ω,Xk ,Xk) (8)

where common elements equal those of the PDA and Xk is an k-dimensional set of memories of
selectable type, i.e. X ∈ {A,Q,R,C}, operated by a k-dimensional memory alphabet Xk . UMAs
thereby control k memory instances Xk , k ∈ N +0 , each of different type if desired.

Memory operations PUSH(), POP(), TOP() and NOP() are contained in each of the k-dimensional
memory alphabet, Xk . Dimensions of memory and memory alphabet are connected to each other
so that the i-th memory alphabet Xi operates on the i-th memory instance Xi , where 1 ≤ i ≤ k .
Operations are shared from PDA-theory and implemented by virtual functions in UMA-theory to
perform according to the principle of operation of the adjacent memory. For memories of type
R and C an address is required while for memories of type Q and A accesses is self-organized by
the memory using an internal address pointer. The address width of the RAM or CAM is log2 (N),
where N is the number of addressable entries of the memory. Such type of UMA is of type Mealy
architecture. Moore and Simple-Moore architectures are gained from a simplification of the output
function similar to PDA and FSM.

2.1 Types of memory
2.1.1 State memory. The UMA state memory is equal to the state memory of FSM and PDA.

2.1.2 Last-In First Out (Stack). A stack A is a memory with NA entries, each of width nA. If nA = 8,
the operation PUSH(A,8’h00) stores eight bits, all of them zero, on top of the stack. A subsequent
operation PUSH(A,8’hFF) stores eight bits, all of them one, on top of the stack. 8’hFF is returned
by POP(A) and 8’h00 by another POP(A). Using two TOP(A) operations would return 8’hFF twice.
POP on an empty and PUSH on a full stack returns a zero entry plus an error indication.

2.1.3 First-In First Out (Queue). A queue Q is a memory with NQ entries, each of width nQ . For
nQ = 8 the operation PUSH(Q,8’h00) stores eight bits, all of them zero, at the end of the queue.
A subsequent operation PUSH(Q,8’hFF) stores eight bits, all of them one, at the end of the same
queue. 8’h00 is returned by POP(Q) and 8’hFF by another POP(Q). The queue is then empty. Using
two TOP(Q) operations would return 8’h00 twice. POP on an empty and PUSH on a full queue
returns a zero entry plus an error indication.

2.1.4 Random-Access Memory (RAM). A RAM R is a memory with NR entries, each of width nR
and an address of width loд2 (NR). For NR = 8, the operation PUSH(R, 3’b000, 8’hFF) stores eight
bits, all of them one, at address 0. 8’hFF is returned by POP(R, 3’b000) and 8’h00 by another POP(R,
3’b000). Using two TOP(R, 3’b000) operations would return 8’hFF twice.

2.1.5 Content-Addressable Memory (CAM). A CAM C is a memory with NC entries, each of width
nC and an address of width loд2 (NC). CAMs are high-speed search engines to return the address
of content-specific memory entries in one cycle. For nC = 8 the operation PUSH(C,3’b000,8’h00)
stores eight bits, all of them zero, at address 0. A subsequent operation PUSH(C,3’b111,8’hFF) stores
eight bits, all of them one, at address 7. TOP(C,8’h00) returns the first address with content 8′h00,
i.e. 0. POP(C,8’hFF) returns the first address with content 8’FF, i.e. 7. C is assumed to be initialized
zero. While POP deletes the entry, TOP will keep the entry. It is left up to the designer of the
CAM how to organize deleted entries, to indicate if entries are not found and to return the entry if
required. UMA-theory is able to manage all types of indications within a single-cycle boundary.

, Vol. 1, No. 1, Article . Publication date: August 2019.

4 M.W. Fertig

2.2 n-dimensional memory operations
If memory operations do not return status information on write accesses for evaluation in state
transfer logic, read memory operations X− are assigned to the input side of the state transfer
function (eq. 6) and write operations X+ are assigned to the output side. A set of read operations is
defined

X− = {TOP (),POP ()} (9)
for the input side of the state transfer function and a set of write operations

X+ = {PUSH (),NOP ()} (10)
for the output side of the state transfer function, where X = X− ∪ X+. In state transfers, only
one operation per memory instance is allowed for cycle alignment reasons. This concept is called
l-dimensional reading andm-dimensional writing in this paper. For l- plusm-dimensional memory
operations, at leastmax (l ,m) memories are required. The state transfer function δ then becomes

δ :
{

S × Σ × Xl
− → S × Xm

+

(s ′,x1+, ...,xm+) = δ (s,σ ,x1−, ...,xl−)
(11)

and the output function

ω :
{
S × Σ × Xl

− → Γ
γ = ω (s,σ ,x1−, ...,xl−)

(12)

where xi− ∈ Xi− and xi+ ∈ Xi+ are read and write operations on memory Xi respectively.

2.3 Example of three-dimensional memory operations in state transfers
In case of a cache coherency snooping protocol with inputs rd , taд and idx , states ID and RD and
RAM memories TAG and MESI, a state transition from idle state (ID) to read state (RD) is given by

(RD, PUSH (TAG,idx),PUSH (MESI,4′b0100)) = ID ∧ rd ∧ (taд != TOP (TAG,idx)) (13)
where taд is the address tag and idx is the address index, i.e. the cache line index and the read/write
addresses for TAG and MESI. In this transition l = 2 andm = 1, i.e. a two-fold write operation and
a one-fold read operation. A sequence of three memory accesses plus state transfer is coded into a
single state transition. Eq. 13 reads as follows:

(Right-hand side:) IF the UMA is in idle state ID and a read operation occurs, i.e. rd is true, and the
address tag does not equal the tag in the memory TAG ,
(Left-hand side:) THEN transfer to read state RD, store the tag to RAM TAG at address idx , store

the exclusive bit to RAM MESI at address idx .

3 CACHE COHERENCY PROTOCOL
Caches are fast and comparably small memories nearby processor cores to provide low-latency
data access and to avoid expensive accesses to main memory. As caches store copies of data, data
consistency problems arise in case of multiple processors operating on the same (shared) data.

A cache coherency protocol performs book-keeping of memory entries loaded and modified by
one or more processor cores in a multiprocessor system. The protocol aims to secure consistent
data exchange between processor cores and the memory of the system, called coherency. Dedicated
caches are caches dedicated to and therefore accessed by only a single processor core while shared
caches are accessed by more than one processor core. In this paper, a cache coherency protocol for
dedicated caches is implemented, where cache and cache coherency hardware are assigned to a
single processor core. Such assignments of core, cache and cache coherency protocol are called
adjacent in this paper. The coherency protocol engine is implemented by a UMA which observes

, Vol. 1, No. 1, Article . Publication date: August 2019.

Universal Memory Automaton 5

(snoops) the address bus for memory access activities. A well known algorithm is the MESI-protocol,
where a set of control bits indicates whether a cache line is modified (M), exclusive (E), shared (S)
or invalid (I).
In this implementation, the UMA has five states. The idle state ID indicates no load/store op-

erations on the address bus. The read state RD indicates that a read operation is performed by
the adjacent processor. The write state WR indicates that the adjacent processor performs a write
operation. The remote read state rRD indicates that a remote and not the adjacent processor per-
forms a read operation. The remote write state rWR indicates that a write operation is performed
by a remote and not the adjacent processor. Slightly deviating from the original protocol, cache
coherency status bits M, E, S and I are defined as follows for the UMA implementation.
A cache line is set to status modified (M), if a write operation is performed by the adjacent

processor on data associated with the cache line. A cache line is set to status exclusive (E), if a
read operation is performed by the adjacent processor on data associated with the cache line. A
cache line is set to status shared (S), if a read operation is performed by a remote processor on
data associated with the cache line. A cache line is set to status invalid (I), if a write operation is
performed by a remote processor on data associated with the cache line.
MESI status indications are mutually exclusive and based on the following two assumptions

for dedicated caches.
First, it is not relevant for data coherency if a remote processor core keeps a copy of data in its

cache while an adjacent processor reads data from memory. Processor cores reading data will mark
the respective cache line exclusive (E) while all others, keeping the cache line as well, will mark it
shared (S) at this moment. Consistency problems occur in case of remote processors writing on this
address and are resolved by setting all duplicate cache entries in the system to status invalid (I).

Second, it is not relevant for data coherency if an adjacent processor core keeps a copy of data
in its cache while a remote processor writes data to memory. Processor writing data will mark the
respective cache line modified (M) while all others, keeping the cache line as well, will mark it
invalid (I) at this moment.
The two observations make a book-keeping of remote core memory activities obsolete in dedi-

cated caches and thereby reduce the overhead for the protocol engine.
For cache entries marked invalid by the coherency protocol, an invalid is indicated by the output

function, as shown by I=1 in transitions (3.2), (C.2), (14.2) and (17.2). This supports counting of
cache misses as part of hardware performance analysis. Transitions (1), (F) and (16) are split into
(*.1) and (*.2) to avoid unnecessary memory action and thereby save power. If power consumption is
not critical, SET_TAG is performed regardless of TAG_MATCH, i.e. TAG_MATCH in (*.1) can be removed
and (*.2) dropped completely.

3.1 Address organization and cache coherency
In computer systems, memory addresses are organized by page-tag and byte-index, where byte-
index is a defined set of low order address bits to index bytes in random access memory, and
page-tag is the remaining high-order bits. As every cache line might store a power of two number
of bytes, the number of bytes in a cache line is given by N = 2b where 0 ≤ b < n. Hence, b = loд2N
low order index bits of the memory address might be unused in the cache address. In case of
associative cache organization, a certain number of low order bits of the tag a are used to be

, Vol. 1, No. 1, Article . Publication date: August 2019.

6 M.W. Fertig

associated with sets of associative cache memory.

ADDR[n−1 : 0]
TAG a INDEX b

In case of anm-way associative cache, a = loд2 (m) low order bits of the tag become part of the
cache address to associate cache blocks. The tag is reduced by a bits.

taд = ADDR[n − 1 : a + INDEX + b] (14)
idx = ADDR[a + INDEX + b − 1 : b] (15)

One-way associative caches are obtained for a = 0. For simplicity let a = 0 in this paper so that the
cache is one-way associative.

3.2 UMA graph for a cache coherency protocol
The cache coherency protocol is implemented by a set of states S = {ID,RD,WR,rRD,rWR} and
an initial state S0 = ID, named "idle". RD and rRD are states to account for "read" and "remote
read" situations whileWR and rWR are states to indicate "write" and "remote write" situations. The
inputs to decide on situations are rd,wr ,cp,res_n,addr (31 : 0) where rd indicates read accesses,
wr indicates write accesses on address addr . cp indicates whether the access is performed by the
adjacent core (cp = 1) that the coherency protocol is accounting for or performed by a remote core
(cp = 0). For this implementation 32-bit addresses, six index bits idx = addr (7 : 2) and 24 tag bits
taд = addr (31 : 8) are used. The protocol operates on two memories of type RAM, called MESI
and TAG. MESI and TAG are addressed by idx to store the cache coherency status and address
tag respectively. Fig. 1 shows the UMA graph. State transfer and output expressions are shown in
tab. 4. To simplify expressions, the implementation allows the use of constants (tab. 3).

4 AUTOMATED HDL GENERATION OF UMA GRAPHS
The tools chain is built on an XML-like format to define the UMA graph for automated Verilog HDL
complilation. A later version is supposed to support a visual graph representation with automatic
import and export function of the shown configuration files. Simple configuration files consist at
least of the series of tags, name, inputs, outputs, states, stateTransfers (fig. 2). The memory
tag is required for PDAs and UMAs. The expr tag is required to define constant expressions.

4.1 Tags definitions
4.1.1 name. < name > MESI < /name > defines an UMA named MESI, which becomes the HDL
module name.

4.1.2 inputs. < inputs > clk,res_n,rd,wr,cp,addr[31 : 0] < /inputs > defines a series of
inputs to be used in expressions, state transfer and output functions.

4.1.3 outputs. < outputs > I < /outputs > defines an output I to indicate an invalid situation,
where a cache entry is marked invalid in case of a remote write access on a memory location
accounted by the protocol.

4.1.4 states. < states > ID(100), RD(000), WR(001), rRD(010), rWR(011) < /states > defines
a set of states with manual encoding.

4.1.5 stateTransfers. < stateTransfers > state transitions < /stateTransfers > defines the
state transfer function by a series of state transitions, line by line.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Universal Memory Automaton 7

Fig. 1. UMA graph for cache coherency protocol. State transition conditions are given in tab. 3 and tab. 4.

IDstart

RD WR

rRD rWR

(1)
(2) (3)

(4)

(5)
(6) (7)

(8)

(9)

(A)

(B) (C)

(D)

(E)

(F)(10)

(11)

(12)(13)

(14)

(15)

(16) (17)

(18) (19)

Fig. 2. UMA configuration file (header section) for a cache coherency protocol.

<name> MESI </name>
<type> UMA, Mealy </type>
<inputs> clk,res_n,rd,wr,cp,addr[31:0] </inputs>
<outputs> I </outputs>
<triggeredge> posedge clk,negedge res_n </triggeredge>
<stateCoding> man </stateCoding>
<states> ID(100), RD(000), WR(001), rRD(010), rWR(011) </states>
<memory>
TAG,ram,24,64; // 64 entries, 24 bit each
MESI,ram,4,64; // 64 entries, 4 bit each
</memory>

4.1.6 state transitions. Each state transition is defined by a single line with expression of the form

source state, condition, destination state, output assiдnment , memory activity

where src is a source state, condition is a boolean expression containing l-fold memory read
operations, i.e. Xl

−. dst is the destination state and output assiдnment is an assignment to one or
more outputs.Memory activity indicatesm-fold memory write operations, i.e. Xm

+ . An example
state transition corresponding to the expression in eq. 13 is shown in tab. 1. There, a memory
named TAG of type ram is defined. TAG has a width of 12 bits and sixteen entries, i.e. the address
width is four bits.

4.1.7 memory. < memory >memory de f initions < /memory > defines a series of memories.

, Vol. 1, No. 1, Article . Publication date: August 2019.

8 M.W. Fertig

Table 1. UMA state transfer expression for a transition from idle state to read state.

Comment Expression (to be entered in a single line)

Source state ID,
Condition rd && cp && addr[31 : 8] ! = TOP(TAG, addr(7 : 2)),
Destination state RD,
Output assignment I = 1′b0,
Memory activity PUSH(TAG, addr[7 : 2], addr[31 : 8]) PUSH(MESI, addr[7 : 2], EXCLUSIVE)

Table 2. UMA memory configurations for the cache coherency protocol.

memory name memory type memory width memory depth
TAG, ram, 24, 64
MESI, ram, 4, 64

Table 3. Expression constants for the Cache Conherency Protocol shown in tab. 4 on page 10.

Constant Expression

READ = res_n & cpu & rd
WRITE = res_n & cpu & wr
R_READ = res_n & !cpu & rd
R_WRITE = res_n & !cpu & wr

NOP = !res_n || (!rd & !wr)
TAG_MATCH = TOP(R,addr(7:2))==addr(31:8))

IS_MODIFIED = TOP(MESI,addr(7:2))==4’b1000)
IS_EXCLUSIVE = TOP(MESI,addr(7:2))==4’b0100)

IS_SHARED = TOP(MESI,addr(7:2))==4’b0010)
IS_INVALID = TOP(MESI,addr(7:2))==4’b0001)

SET_TAG = PUSH(R,addr(7:2),addr(31:8))
SET_MODIFIED = PUSH(MESI,addr(7:2),4’b1000)
SET_EXCLUSIVE = PUSH(MESI,addr(7:2),4’b0100)

SET_SHARED = PUSH(MESI,addr(7:2),4’b0010)
SET_INVALID = PUSH(MESI,addr(7:2),4’b0001)

4.1.8 memory definitions. A memory is defined by a line with an expression of the form

memory name, memory type, width, depth

wherememory name is the name of the memory, here TAG and MESI . Memory type is cam, ram,
queue or stack.Depth is the number of bits per memory entry and number is the number of entries.
The address width is determined automatically from the loд2 of the number of entries. An example
memory configuration is shown in tab. 2.

4.1.9 expr tag. < expr > constant expression de f initions < /expr > defines a constant expression
to be used in state transfer and output expressions.

4.1.10 constant expression definitions. Constant expression can be used to easily avoid large
expressions in state transfers, in particular when complex memory operations are involved. A
constant expression is defined by a line of the form constant = expression. The constant expressions
used in the cache coherency protocol are shown in tab. 3.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Universal Memory Automaton 9

RAM #(4,64) MESI_RAM(.clk(MESI_RAM_clk), .res_n(MESI_RAM_res),
.wr(MESI_RAM_wr), .wr_addr(MESI_RAM_wr_addr[5:0]), .wr_data(MESI_RAM_wr_data[3:0]),
.rd(MESI_RAM_rd), .rd_addr(MESI_RAM_rd_addr[5:0]), .rd_data(MESI_RAM_rd_data[3:0]));

wire READ; assign READ = res_n & cp & rd;
wire TAG_MATCH; assign TAG_MATCH = POP_TAG_RAM(addr[7:2])==addr[31:8];

always @(*) begin
case (STATE)
ID : begin

READ & ˜ TAG_MATCH) begin
NEXT_STATE <= RD;
TAG_RAM_status <= PUSH_TAG_RAM(addr[7:2],addr[31:8]);
MESI_RAM_status <= PUSH_MESI_RAM(addr[7:2],EXCLUSIVE);

end ...

Fig. 3. Auto-generated Verilog HDL for memory instantiation and the state transition shown in tab. 1

4.1.11 Others. Other tags are for example type to choose between uma, pda, or fsm and archi-
tectures mealy, moore and smoore. TriggerEdge is used to configure a positive (pos) or negative
(neg) clock edge, stateCoding to select manual, one-hot or gray encoding. These types of tags are
defaulted automatically if unused or otherwise contained in the header section of a UMA definition
file as shown in fig. 2.

4.2 HDL generation
Boolean logic for state transfer, output functions and memory instances are compiled at Register
Transfer Level (RTL) with Verilog HDL. The entire protocol including testbench is derived from a
140 lines configuration file.

The Cache Coherency Protocol for the finite state graph shown in fig. 1 instantiates twomemories
of type ram, named TAG and MESI, each with 64 entries, addressed by 6 address bits, i.e. index =
addr (7 : 2). Every cache line is 32 bits wide and thereby stores four bytes so that the b-field
of the address is 2 bits wide, i.e. index (1 : 0). Memory TAG stores the 24 bits wide address tag
addr (31 : 8) and memory MESI stores one-hot encoded coherency settings for cache lines addressed
by index (7 : 2), i.e. Modified, Exclusive, Shared and Invalid.

4.3 Module interface
The module interface is derived from the header section shown in fig. 2. Name, inputs and output
definitions are used straight forward in the module interface.

4.4 Memory instantiation
Memories are instantiated as defined in the configuration file. The code fragments in fig. 3 shows
the definition and instantiation of the RAMMESI and the state transition discussed in tab. 1.

4.5 State transfer with memory read and output function with write access
State transfers are derived from the < stateTransfers > tag as shown in 1. Verilog code is com-
piled as shown in fig. 3, where the state transfer function is built on a case statement encapsulated
in an always block. There, the current state is evaluated and the state transitions shown in the
UMA graph (fig. 1) provide the expressions for the state transition logic (tab. 4).

, Vol. 1, No. 1, Article . Publication date: August 2019.

10 M.W. Fertig

Table 4. State transition definitions for the graph representation of the cache coherency protocol in fig. 1.
Expression constants are defined in tab. 3 on page 8.

Arc SRC State Condition TGT State Output Memory operation

(start,2,4,6,8,15) * NOP ID
(1.1) ID READ & TAG_MATCH, RD, , SET_EXCLUSIVE
(1.2) ID READ & !TAG_MATCH, RD, , SET_TAG SET_EXCLUSIVE
(3.1) ID WRITE & TAG_MATCH & !IS_INVALID, WR, , SET_MODIFIED
(3.2) ID WRITE & TAG_MATCH & IS_INVALID, WR, I=1,
(5) ID R_READ & TAG_MATCH, rRD, , SET_SHARED
(7) ID R_WRITE & TAG_MATCH, rWR, , SET_INVALID
(9) RD WRITE & TAG_MATCH, WR, , SET_MODIFIED
(A) WR READ & TAG_MATCH, RD, , SET_EXCLUSIVE
(B) WR READ & TAG_MATCH, rWR, , SET_INVALID

(C.1) rWR WRITE & TAG_MATCH & !IS_INVALID, WR, , SET_MODIFIED
(C.2) rWR WRITE & TAG_MATCH & IS_INVALID, WR, I=1,
(D) rWR R_READ & TAG_MATCH & IS_MODIFIED, rRD, , SET_SHARED
(E) rRD R_WRITE & TAG_MATCH, rWR, , SET_INVALID

(F.1) rRD READ & TAG_MATCH, RD, , SET_EXCLUSIVE
(F.2) rRD READ & !TAG_MATCH, RD, , SET_TAG SET_EXCLUSIVE
(10) RD R_READ & TAG_MATCH, rRD, , SET_SHARED
(11) RD R_WRITE & TAG_MATCH, rWR, , SET_INVALID

(12.1) rWR READ & TAG_MATCH, RD, , SET_EXCLUSIVE
(12.2) rWR READ & !TAG_MATCH, RD, , SET_TAG SET_EXCLUSIVE
(13) WR R_READ & TAG_MATCH, rRD, , SET_SHARED

(14.1) rRD WRITE & TAG_MATCH & !IS_INVALID, WR, , SET_MODIFIED
(14.2) rRD WRITE & TAG_MATCH & IS_INVALID, WR, I=1,
(16.1) RD READ & TAG_MATCH, RD, , SET_EXCLUSIVE
(16.2) RD READ & !TAG_MATCH, RD, , SET_TAG SET_EXCLUSIVE
(17.1) WR WRITE & TAG_MATCH & !IS_INVALID, WR, , SET_MODIFIED
(17.2) WR WRITE & TAG_MATCH & IS_INVALID, WR, I=1,
(18) rRD R_READ & TAG_MATCH, rRD, , SET_SHARED
(19) rWR R_WRITE & TAG_MATCH, rWR, , SET_INVALID

4.5.1 Example. In tab. 1 and arc 1.1 in tab. 4: IF the protocol engine is in state idle (ID), a read
operation occurs and the corresponding read access to the TAG RAM causes a tag match, i.e.
(READ & TAG_MATCH), THEN the UMA transfers to read state (RD) and a write access is performed
to change the coherency status of the cache entry to Exclusive when the read state is reached. This
complex operation is defined by a single state transfer. The corresponding waveform is shown in
fig. 4.

4.6 Output function
Outputs are set according to the state and state transfer conditions in the case statement in case of
a Mealy architecture and in a separate case statement and according to the state only in case of a
Moore or Simple Moore architecture.

5 CONCLUSIONS
Universal Memory Automata (UMA) provide a formalism for using complex memory configurations
and operations in finite state graphs. Compared to Push Down Automata (PDA), where only a stack
and state memory are utilized or Finite State Machine (FSM), where only a state memory is utilized,
Universal Memory Automata (UMA) extend these concepts by additional memory organizations,

, Vol. 1, No. 1, Article . Publication date: August 2019.

Universal Memory Automaton 11

Fig. 4. Read access of own CPU (cp = rd = 1) causing a TAG to be stored in TAG_RAM and coherency status
’exclusive’, i.e. 0100, into MESI_RAM.

e.g. Queue, RAM and CAM. UMAs allow an arbitrary set and configuration of memories to be
operated at the same time, where complex and multiple read/write memory operations are included
in the state transfer and output functions. This feature does not enable UMAs to process another
class of languages in the Chomsky Hierarchy but it makes them more flexible and intuitively
applicable than PDAs and FSMs when implementing complex applications. With only 140 lines
of parametrized configuration, a complex and adaptable Cache Coherency Protocol including
test-bench is automatically implemented in the Hardware Description Language (HDL) Verilog
at Register Transfer Level (RTL). The proposed theory is in general applicable to all types of
memories within the state transfer cycle alignments, i.e. single-cycle read/write access. This shows
the potential of Universal Memory Automata (UMAs) and provides the possibility for further
extensions.

REFERENCES
[1] T.L. Booth. 1962. Sequential Machines and Automata Theory (1st ed.). Number 67-25924. John Wiley and Sons, Inc.,

New York. Library of Congress Card Catalog.
[2] J. Carroll and D. Long. 1989. Theory of Finite Automata with an introduction to Formal Languages. Prentice Hall.
[3] A. Gill. 1962. Introduction to the Theory of Finite-state Machines. McGraw-Hill.
[4] J.E. Hopcroft and J.D. Ullman. 1979. Introduction to Automata Theory, Languages and Computation. Addison-Wesley,

MA.

, Vol. 1, No. 1, Article . Publication date: August 2019.

12 M.W. Fertig

[5] L. Boasson J.-M. Autebert, J. Berstel. 1997. Context-Free Languages and Push-Down-Automata. Vol. 1. Springer-Verlag.
111-174.

[6] J.D. Ullman J.E. Hopcroft. 1967. Nonerasing Stack Automata. Journal of Computer System Sciences 1 (1967), 166–186.
https://doi.org/10.1016/s0022-0000(67)80013-8

[7] E.J. McCluskey. 1965. Introduction to the Theory of Switching Circuits (1st ed.). McCraw-Hill, New York. Library of
Congress Card Catalog.

[8] M. Minski. 1967. Computation: Finite and infinite Machines (1st ed.). Prentice-Hall, New Jersey.
[9] L.J Stockmeyer R.E. Ladner, R.J. Lipton. 1984. Stack Automata and Compiling. SIAM J. Comput. 13, 1 (1984), 135–155.

https://doi.org/10.1137/0213010
[10] M.A. Harrison S. Ginsburg, S.A. Greibach. 1967. One-way Stack Automata. J. ACM 14, 1 (1967), 389–418. https:

//doi.org/10.1145/321386.321403
[11] M.A. Harrison S. Ginsburg, S.A. Greibach. 1967. Stack Automata and Compiling. J. ACM 14, 1 (1967), 172–201.

https://doi.org/10.1145/321371.321385
[12] S. Seshu. 1963. Introduction to the theory of finite-state machines. Proc. IEEE 51, 9 (Sep. 1963), 1275–1275. https:

//doi.org/10.1109/PROC.1963.2548
[13] M. Snipser. 1997. Introduction to the Theory of Computation. PWS Publishing. Section 2.2: Pushdown Automata, pp.

101-114.
[14] P. Zyska. 2018. Extended Push Down Automata. Bachelor Thesis, HTWG Konstanz, University of Applied Sciences.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://doi.org/10.1016/s0022-0000(67)80013-8
https://doi.org/10.1137/0213010
https://doi.org/10.1145/321386.321403
https://doi.org/10.1145/321386.321403
https://doi.org/10.1145/321371.321385
https://doi.org/10.1109/PROC.1963.2548
https://doi.org/10.1109/PROC.1963.2548

	Abstract
	1 Introduction
	1.1 Finite State Machines
	1.2 Push Down Automata

	2 The Universal Memory Automaton
	2.1 Types of memory
	2.2 n-dimensional memory operations
	2.3 Example of three-dimensional memory operations in state transfers

	3 Cache Coherency Protocol
	3.1 Address organization and cache coherency
	3.2 UMA graph for a cache coherency protocol

	4 Automated HDL generation of UMA graphs
	4.1 Tags definitions
	4.2 HDL generation
	4.3 Module interface
	4.4 Memory instantiation
	4.5 State transfer with memory read and output function with write access
	4.6 Output function

	5 Conclusions
	References

