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Motivation

== 90 nm
m Significant annual growth in demand for “
network bandwidth .
High-speed broadband

High-definition (HD) Video/TV
Consumer IP

Social media

Cloud computing
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Fig.1 Minimum delay per unit length as a function of

m Increasing gap between network traffic normalized interconnect with (W/W,,,)) [2].
and hardware /O bandwidth R
Bandwidth demand doubles every 18 month [1] 1 fom—San S S22
Server bandwidth doubles every 24 months [1] . R
m Electrical interconnect performance stagnates s
since several CMOS generations (Fig. 1+2) i s ’
a 107 - o
[1] Proceedings of the IBM Printed Circuit Board Symposium, Raleigh, USA, 2011 -
[2] G. Chen et al., ,,Electrical and Optical On-Chip Interconnects in Scaled
Microprocessors*, Proceedings of the IEEE International Symposium on '%20:34 e St p—p 2016
Circuits and Systems, Vol. 3, pp. 2514-2517, 2005. Yaar

Fig.2 Power-Delay-Product (PDP) over technology node and
year for 1cm length electrical and optical interconnects [2].
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Electrical and Optical Interconnects

Challenges of electrical interconnects

m  Wire/network delay

Dependency on distance and
modulation frequency

Does not scale with the technology node [2]

m  Power consumption
Increases with distance and bandwidth
Increasing power-delay product (Fig.2)

m  Bandwidth density
Higher frequencies require wider pitch
Band-limited by Ball Grid Array (BGA)

Advantages of optical interconnects

m Fibre/network delay
No signal repeaters

Propagation speed independent from
signal modulation frequency

m  Power per Tera-Bit

~50x lower than copper solution [1]
(= chip cooling)

m  Bandwidth density
Channel separation of a few microns enough
On- and Off-chip bandwidth identical

m (Cost per Tera-Bit
~50x less than copper solution [1]

[1] Proceedings of the IBM Printed Circuit Board Symposium, Raleigh, USA, 2011

[2] David A.B. Miller, ,,Rationale and Challenges for Optical Interconnects to
Electronic Chips“, Invited Paper, Proceedings of the IEEE, Vol.88, No.6, June 2000
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Silicon photonics

Requirements Silicon is
m  Compliance with ...THE material in CMOS Technology
1 Standard Technology ... optimal for waveguides

1 Design methodology

... not optimal for lasers or detectors
o1 CADtools

" Reliable integration at standard cost The challenge with silicon as absorbers

m  Gainin performance m Indirect bandgap

m Low absorption

Counter-measures

m  Maximise depleted volume
Optimize the optical path
Light-trapping

Avalanche effect

Grating
coupler photodetecior

Fig.1 The main building Blocks for silicon photonic systems.
Source: Optics and Photonic News, 09/2013
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Polysilicon-Grating Detector (2007)

Challenges in a 45nm SOI technology Optical simulation
m  Absorption length of silicon is ~5pm at 670nm m 6% absorption without grating
m  Silicon channel is 7onm deep m 257% absorption with 1D-grating
. m  66% absorption with 2D-grating
Design Approach
m  Polysilicon grating coupler to ) A A Y
optimize the optical path v ol
m Buried Oxide and Silicon Nitride to trap light , FHEHT
e JHEHEE
PSS S— poly 5 - b) O'QI_ I _
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Fig.3 Combined absorption for s- and p-polarization (b)

Fig.1 45nm CMOS SOl layers (side-view). = Fig.2 Intensity distribution ) )
and Poynting vector. of a 2D grating (a) as a function of the wavelength for

three different grating periods a (other parameters fix).
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Polysilicon-Grating Detector

Measurement results Evaluation
m  Minmium rise time 8.5ps m  Goodrise time

at 0.02 A/W responsitivity (f,5 = 41GHz) m Lower responsitivity than expected
m  Maximum responsitivity 0.07 A/W m Deviation in peak wavelength

at 42ps rise time (f,43 = 8.33GHz)

m  Responsitivity of 2D-gratings about 3.3 Reasoning
times higher than for 1D-gratings m Silicides (Nickel and Platinum)
m  Process variations
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Fig.1 Impulse response of a 50x50 mm? detector measured 01p At .
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Shallow-Trench-Grating Detector (2009)

Challenges in a 32nm SOI technology Optical simulation
m  Absorption length of silicon is m  39.5% maximum absorption for TE-mode
~15 ym at 850nm optimal period: 377nm
m Silicon channel is 7onm deep m  28.6% maximum absorption for TM-mode
m  Metal Gates (TiN) optimal period: 425nm
. m 5% absorption loss within the accuracy of
Design Approach the semiconductor process

m  Shallow Trench Isolation (STI) grating
m  P/N*/STI structure in the silicon layer
m lLarge P regions to maximize intrinsic area

04

0.33

o
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=]

Superstrate SiN,

- > period
<«— >  ywidth

Width [nm]

: STI (SiO 70
P I N+| .. ( . 2.) # nm 0.200-
Buried Oxide (Si0,) 145nm e
Bulk Silicon (Si ) —
____________ Pitch [nm]
Fig.1 Side view on the Shallow-Trench Fig.2 Grating period sensitivity analysis
grating with PIN-Diode. for a 5% drop in the bsorption.
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Shallow-Trench-Grating Detector

Measurements Evaluation
m  Meanrise time 12ps and fall time <100ps m Verysimple structure in
at 0.05 A/W for a 25x25 um? detector standard CMOS SOI
m  Maxmimum responsitivity 0.27 A/W m |Improved rise time, fall time and
for a 200x200 pm? detector responsitivity
m Reverse bias of 4V m  Alignment of peak absorption
m  Sensitivity to variations
S fle Control Setp  Messure  Calbrate  Urilities  Help D3N 2011 1258 =] in the CMOS process
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(10i2) 065 = Simulation TE
YU | Poa™™ | e | 9™ | e | MiEmy | Ak =5 70 T W0 0 50
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Fig.2 Impulse response Of? ZSXZSHmZ detector (80 Fig.3 Simulation versus measured absorption.
fs pulse, 80MHz rep-rate Ti-Sapphire laser).
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Germanium waveguide detector (2011)

Design Approach Results

m |BM,,Silicon-Nanophotonics Technology* m 0.5 A/W responsitivity at 1.3 pm and 1.5 pm
based on a 9gonm CMOS process m  16ps rise and fall time

m  20pm long and 10o0nm thick Germanium m 1.5V bias for 30 GHz with
absorber 10dB avalanche gain

m  Waveguide structure to feed detector m  Bit Error Rate 10" and low noise
with light up to 40GHz

m  Avalanche detector
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Fig.1 Structure of the Silicon- Fig.2 Semi-logarithmic plot of photocurrent transients
Germanium waveguide detector. and a variation in the bias voltage (left).
Source: IBM Thomas J. Watson Eye diagram at 40GHz (right).

Research, J. Vlasov et al.
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Summary

m  Optimized gratings
enhance the local absorption (= proof of principle)
show a peak wavelength sparation a few nanometers (>WDM)
are sensitive to process variations (= process control)

m  Grating enghanced detectors need quite large areas
for reasonable responsitivities (= RC-delay)

m  Germanium shows clear advantages due to optical properties

Outlook

m Silicon-Nano-Photonics is a young field of research with a wide range of applications and
lots of opportunities

m  We'‘re today seeing just the first steps towards silicon-photonics in commercial products

m  Optics and Electronics are moving closer together with a strong demand for engineers
being experts in both domains

27.05.2014 On-chip optical detectors
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Thank you for your attention!
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depletion zone

o

= A diode develops at every junction between p- and n-doped material.

= A depletion zone is created if a reverse bias is applied

= The depletion zone grows fast in regions with low doping

= The thickness grows often with the ¥ of the applied voltage

= The diode has a capacitance with decreases with increasing bias

» The fixed space charges in the depletion zone create an electrical field

» Photons absorbed in the depletion zone create electron-hole pairs which are separated by
the field.

» Photons absorbed in the undepleted zones create e-h-pairs which diffuse around and either
recombine, get trapped or ‘fall’ into the depletion zone. This is seen in dc-measurements.
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= Low doping

= High bias

= Close to surface
= | arge thickness
= Large area

thick depletion zone, small cap

thick depletion zone, small cap, high field - fast!
no loss ‘above’

good absorption

good light collection (only up to some limit!)

[

= Note:
When diode area increases, capacitance also increases. There is no gain!
Better concentrate available light intensity on small spot and keep diode small!

= Note:
Depletion thickness for fast diodes may not be too thick, because charge collection
needs some time: electrons in a 3.3um thick diode at 3.3V bias need ~ 30ps for
collections. And holes are x3 slower.... (Also watch velocity saturation!)
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= Examples of diodes in CMOS technology:

substrate

for low doped n-well
read out at p+ (smaller cap!)

for low doped substrate
readout at nwell (substrate = gnd)
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insensitive p-trenches are not
A absolutely needed!

depletion region depletion region

= Must chose pitch < depletion thickness to avoid insensitive area

= When is trench diode better?
— when trenches are deeper than depletion thickness, i.e. in highly doped substrate
(but: capacitance of these diodes is high — better use shallow trenches then...)

= Note: ‘deep’ trench diodes are faster than ‘thick’ vertical diodes!
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The quantum efficiency (external quantum efficiency) n of a
photodetector is the probability that a single photon incident on the device
generates a photocarrier pair that contributes to the detector current.

n) = ¢ (1-R) [1 —exp(-a(r)d)]

R 1s the optical power reflectance at the surface, C is the fraction of
electron-hole pairs that contribute to the detector current, a(A) the
absorption coefficient of the material, and d the photodetector depth.

C 1s the fraction of electron-hole pairs that avoid recombination (often
dominated at the material surface) and contribute to the useful
photocurrent. Surface recombination can be reduced by careful material
growth and device design/fabrication.

[1 —exp(-a(A)d)] represents the fraction of the photon flux absorbed in
the bulk of the material. The device should have a value of d that is
sufficiently large. (d > 1/a, oo =10*cm!, d> 1 um)

27.05.2014 On-chip optical detectors



