## Conservation Law and the VWPM

by Prof. Dr. Matthias Fertig

Prof. Dr. Matthias Fertig 12/2021 Conservation Law and the VWPM

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## Literature



#### [Fertig, 2012] M. Fertig and K.-H. Brenner

Vector wave propagation method, Journal of the Optical Society of America A Vol. 27, Issue 4, pp. 709-717 (2010)



[Brenner, 1993] K.-H. Brenner, W. Singer

Light propagation through microlenses: a new simulation method Applied Optics Vol. 32, Issue 26, pp. 4984-4988 (1993)



#### [Feith, 1978] Feith, Fleck.

Light propagation in graded-index optical fibers, Applied Optics Vol. 17, Issue 24, pp. 3990-3998 (1978)



[Jozefowski, 2007] Jzefowski, Fiutowski, Kawalec, Rubahn.

Direct measurement of the evanescent-wave polarization state, Journal of the Optical Society of America B Vol. 24, Issue 3, pp. 624-628 (2007)

< ロ > < 同 > < 三 > < 三 >

Vector Wave Propagation Method Modifications Summary, Results And Outlook

## Outline



Vector Wave Propagation Method

- Introduction And Area Of Application
- Limiting Assumptions
- Principle Of Operation
- Classification of Modes



#### Conservation Law

- No Boundaries
- Lateral Boundaries
- Longitudinal Boundaries



#### Modifications

- Evanescent Wave Boundary and Model
- Anti-Aliasing Filter
- Lateral Field Dependency
- Spatial System Filter
- Static Low-Pass Filter

Summary, Results And Outlook

#### Vector Wave Propagation Method

Conservation Law Modifications Summary, Results And Outlook Introduction And Area Of Application Limiting Assumptions Principle Of Operation Classification of Modes

イロト イボト イヨト イヨト

э

# Introduction Of The Problem

Prof. Dr. Matthias Fertig 12/2021 Conservation Law and the VWPM

Introduction And Area Of Application Limiting Assumptions Principle Of Operation Classification of Modes

#### Vector Wave Propagation Method Introduction And Area Of Application

| <u><u></u></u> | 1.1       |
|----------------|-----------|
| Charac         | teristics |
|                |           |

- Fourier Method
- Plane Wave Spectrum
- Axis of Propagation (z)
- No Paraxial Limitation
- Bidirectional Version

- Area of Application\*
  - Systems of Aspheres/Lenses
  - Waveguides, Gratings
  - Resonators (Anti-Reflection)
  - Beam Splitter, Beam Taper
  - Interferometer (Mach-Zehnder)

From a separation of variables in Maxwell's equations and for harmonic fields we get the Helmholtz-Equation

$$(
abla^2-k^2)\cdot {f E}=0$$

\*Propagation Distance Large Compared To Wavelength.

Introduction And Area Of Application Limiting Assumptions Principle Of Operation Classification of Modes

## Vector Wave Propagation Method Limiting Assumptions

#### Limiting Assumptions

- Non-Conducting Medium  $\sigma = 0 [S/m]$
- Charge-Free Medium  $ho = 0 \; [V/m^3]$

• Lateral Field Dependency

$$\nabla \cdot (\epsilon \cdot \mathbf{E}) = 0$$

• Non-Magnetic Medium 
$$\boxed{\mu=1\,\left[V/m^3
ight]}$$

- SVA\* Approximation  $\mathbf{E}(\mathbf{r},t) = \mathcal{R} \left\{ \mathbf{E}_0(\mathbf{r},t) \cdot e^{i(\mathbf{kr}-\omega t)} \right\}$
- Small Index Variations

$$\nabla\left(\frac{\nabla\epsilon(\mathbf{r})}{\epsilon(\mathbf{r})}\cdot\mathbf{E}\right)\approx0$$

\*Slowly Varying Amplitude (Slowly Varying Envelope) Approximation.

Introduction And Area Of Application Limiting Assumptions **Principle Of Operation** Classification of Modes

(日) (部) (エ) (エ)

## Vector Wave Propagation Method Principle of Operation

| Principle of Operation |   |                                                                                        | Description               |  |  |
|------------------------|---|----------------------------------------------------------------------------------------|---------------------------|--|--|
| $\mathbf{E}_i$         | = | incident field                                                                         | Field in layer k          |  |  |
| $\mathbf{e}_t$         | = | $\mathcal{F}\left\{ \mathbf{E}_{i} ight\}$                                             | Fourier Transformation    |  |  |
| $\mathbf{e}_t$         | = | $\mathbf{M}^{3\times 3}\cdot\mathbf{e}_{i}$                                            | Transfer at the interface |  |  |
| $\mathbf{E}_t$         | = | $\sum \mathbf{e}_t \cdot e^{i(\mathbf{k}_\perp \mathbf{r}_\perp + \phi_z 	riangle z)}$ | Shift and Superposition   |  |  |
| $\mathbf{E}_t$         | = | transmitted field                                                                      | Field in layer $k+1$      |  |  |

Introduction And Area Of Application Limiting Assumptions Principle Of Operation **Classification of Modes** 

イロト イヨト イヨト

### Vector Wave Propagation Method Classification of Modes

#### Propagating Modes

$$\left(2\pi\cdot rac{n}{\lambda}
ight)^2 > k_x^2+k_y^2$$

Transversal Wave That Carries Energy Across Boundaries!

#### **Evanescent Modes**

$$\left(2\pi\cdot \frac{n}{\lambda}
ight)^2 \leq k_x^2+k_y^2$$

No Transversal Wave That Carries No Energy Across Boundaries!

Introduction And Area Of Application Limiting Assumptions Principle Of Operation Classification of Modes

< ロ > < 同 > < 回 > < 回 > .

## Vector Wave Propagation Method Classification of Modes

#### Four Types of Modes

- Propagating-Propagating (Type 1) propagation through homogeneous medium  $n_i = n_t$
- Propagating-Evanescent (Type 2)
   transfer at interface n<sub>i</sub> > n<sub>t</sub> (internal reflection)
- Evanescent-Evanescent (Type 3) propagation through homogeneous medium  $n_i = n_t$
- Evanescent-Propagating (Type 4)
   transfer at interface n<sub>i</sub> < n<sub>t</sub> (external reflection)

No Boundaries Lateral Boundaries Longitudinal Boundaries

## Conservation Law

## Energy Flux Continuity Equation\*

Before Boundary|Behind Boundary
$$\int \mathbf{S}_i \, d\mathbf{A} \equiv \int \mathbf{S}_t \, d\mathbf{A}$$
 $\int \mathbf{S}_i \cdot \mathbf{n} \, dA \equiv \int \mathbf{S}_t \cdot \mathbf{n} \, dA$  $\int (\mathbf{E}_i \times \mathbf{H}_i) \cdot \mathbf{n} \, dA \equiv \int (\mathbf{E}_t \times \mathbf{H}_t) \cdot \mathbf{n} \, dA$  $\sum_i n \cdot \cos(\theta_i) \cdot |\mathbf{E}_i \cdot \mathbf{E}_i^*| \equiv \sum_t n \cdot \cos(\theta_t) \cdot |\mathbf{E}_t \cdot \mathbf{E}_t^*|$ 

\* In Non-Absorbing and Absorbing Medium. Absorption is connected to Propagation!

・ロト ・四ト ・ヨト ・ヨト

э

No Boundaries Lateral Boundaries Longitudinal Boundaries

#### Conservation Law Non-Absorbing Homogeneous Medium

#### Electric Field Amplitude and Normalized Electromagnetic Flux



Prof. Dr. Matthias Fertig 12/2021 Conservation Law and the VWPM

- 4 目 ト - 三 ト - 4

No Boundaries Lateral Boundaries Longitudinal Boundaries

Conservation Law Non-Absorbing Homogeneous Medium

#### Mode Profile



No Boundaries Lateral Boundaries Longitudinal Boundaries

## Conservation Law

#### Two Lateral Boundaries in Non-Absorbing Medium





イロト イポト イヨト イヨト



No Boundaries Lateral Boundaries Longitudinal Boundaries

#### Conservation Law Two Lateral Boundaries in Non-Absorbing Medium

#### Mode Profile



No Boundaries Lateral Boundaries Longitudinal Boundaries

## Conservation Law

#### Two Longitudinal Boundaries in Non Absorbing Medium



for a waveguide with contrast 1.5 traversed by a plane wave at 0° 4,50E+04 RElatice Electromagnecit Flux [-] 4.00E+04 3 50E+04 3.00E+04 2.50E+04 2 00E+04 1.50E+04 1.00E+04 5.00E+03 0.00E+00 0 50 \$ P 6 ۵ 60 æ <br/> 10 න රං න 6

Normalized Electromagnetic Flux

Layer Number [-]

< ロ > < 同 > < 三 > < 三 >



No Boundaries Lateral Boundaries Longitudinal Boundaries

#### Conservation Law Two Longitudinal Boundaries in Non Absorbing Medium

#### Mode Profile





Sum of Mode Amplitudes Sorted by Type of Mode

■ Type 4 (ev-prop) ■ Type 2 (prop-ev) □ Type 3 (ev-ev) ■ Type 1 (prop-prop)

< ロ > < 同 > < 三 > < 三 >

No Boundaries Lateral Boundaries Longitudinal Boundaries

#### Conservation Law Two Longitudinal Boundaries in Non Absorbing Medium

#### Mode Profile versus Electric Field Gradient x-Component



Maximum Gradient of Electric Field Amplitude (x-component) for a waveguide with contrast 1.5 traversed by a plane wave at 0° 1.2



No Correlation to Mode Profile and No Instabilities.

Prof. Dr. Matthias Fertig 12/2021 Conservation Law and the VWPM

No Boundaries Lateral Boundaries Longitudinal Boundaries

#### Conservation Law Two Longitudinal Boundaries in Non Absorbing Medium

#### Mode Profile versus Gradient of Electric Field x-Component



High Electric Field Amplitude Inside the Waveguide.

Prof. Dr. Matthias Fertig 12/2021

Conservation Law and the VWPM

< D > < A > < B > < B >

No Boundaries Lateral Boundaries Longitudinal Boundaries

#### Conservation Law Two Longitudinal Boundaries in Non Absorbing Medium

#### Mode Profile versus Electric Field Gradient z-Component





Maximum Gradient of Electric Field (z-Component)

Correlation to Mode Profile and Significant Instabilities.

Prof. Dr. Matthias Fertig 12/2021

Conservation Law and the VWPM

< ロ > < 同 > < 三 > < 三 >

No Boundaries Lateral Boundaries Longitudinal Boundaries

## Conservation Law

Two Longitudinal Boundaries in Non Absorbing Medium

### Electric Field z-Component

Electric Field Distribution



Real Part of the Z-Component, Layer 15 to 30

Aperture Index [-]

Significant Gradients at Waveguide Boundaries.

Prof. Dr. Matthias Fertig 12/2021

Conservation Law and the VWPM

< ロ > < 同 > < 三 > < 三 >

No Boundaries Lateral Boundaries Longitudinal Boundaries

## Conservation Law

Two Longitudinal Boundaries in Non Absorbing Medium

### Observations

- Violation of Conservation Law for Longitudinal Boundaries
- Correlation of Mode Distribution to Electric Field Gradient
- Correlation of Electric Field Gradient to Refr. Index Gradient

#### Questions

- Does Lateral Field Dependency affect Conservation Law?
- ightarrow Discrete Version of  $\nabla \cdot \mathbf{D} = 0$  published in [1]
  - Does Lateral Index Change affect Conservation Law?
- $\rightarrow\,$  Limit Gradient of Index Change
  - Do Evanescent Modes affect Conservation Law?
- $\rightarrow$  Evanescent Model published in [4]

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

< ロ > < 同 > < 三 > < 三 > 、

э

# Methods For Stabilization

Prof. Dr. Matthias Fertig 12/2021 Conservation Law and the VWPM

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

< ロ > < 同 > < 三 > < 三 >

### Methods For Stabilization Figure Of Merit (FOM)

FOM=planeWave/gaussBeam

#### Energy Flux Figure Of Merit

$$FOM = \frac{1}{nz} \cdot \sum_{k=1}^{nz} \frac{f_k}{f_0} = 1$$
$$f_i = \sum_{m=1}^{ny} \sum_{n=1}^{nx} \cos \theta \cdot |\mathbf{E} \cdot \mathbf{E}^*| > 0 \quad \forall i$$

Purpose: Simple Comparison of Results

Principle: The Closer The FOM to One, the Better The Result

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

#### Methods For Stabilization Energy Flux Summary

Numeric Stability

#### FOM=62744/0.599746

Solely Propagating Complex Modes "Starting Point"



#### Observation: All Modes Treated as Propagating Modes!

Problem: Evanescent Waves do Not Carry Energy!

vs. Modeling of Physical Properties

-

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

#### Methods For Stabilization Numeric Instability at Evanescent Boundary

#### Instability in the Z-Component



Observation 1:Evanescent Mode Classified a Propagating ModeObservation 2:Transversality Condition not for Evanescent Modes

Numeric Stability vs. Modeling of Physical Properties

< = >

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

#### Methods For Stabilization Numeric Instability at Evanescent Boundary

#### Evanescent Boundary Threshold

#### Threshold

$$89.9 < heta < 90.1$$
  
 $heta_{\perp} := 89.9$ 

// header.hh
ifndef COS.THETA.90
define COS.THETA.90 1.745E-3
// 1.745E-3 = abs(cos(89,9)) = abs(cos(90,1))
endif
// source.cc
if( abs(kz) < nk0\*COS.THETA.90 ) kz = cpx(0,0);</pre>

```
// Zero kz will classify an evanescent mode!
```

< ロ > < 同 > < 回 > < 回 >

Purpose 1: Classify Boundary Mode(s) an Evanescent Mode

Purpose 2: Avoid Instability in Transversality Expression

$$E_z = -\frac{E_x \cdot k_x + E_y \cdot k_y}{k_z}$$

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

#### Methods For Stabilization Numeric Instability at Evanescent Boundary

Numeric Stability

FOM= 0.962064 / 1.36373

#### Results with Evanescent Boundary Threshold

VS.



#### Observation: Strong Stabilization of E-Field (Z-Component)

Conclusion: Continue with Evanescent Boundary Threshold

Modeling of Physical Properties

< 17 ▶

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

#### Methods For Stabilization Numeric Instability at Evanescent Boundary

#### New Electric Field z-Component

Electric Field Distribution

Real Part of the Z-Component, Layer 15 to 30



Aperture Index [-]

Discontinuities at Waveguide Boundaries.

< D > < A > < B > < B >

э

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

# Methods For Stabilization

Evanescent Wave Model

Theory of the Evanescent Wave Model [4]



#### Remark: Model Is Only Valid for Total Internal Reflection\*



Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

# Methods For Stabilization

FOM= 0.951244 / 1.35312

#### Evanescent Wave Model & Boundary Threshold

Normalized Energy Flux (2.2) Normalized Energy Flux (2.2) for variations of waveguide contrast and plane waves at 0° for variations of wavequide contrast and Gaussian beams at 0° 1.4 1.4 100% 1.2 1,2 zed Energy Flux [-] rgy Flux 0.8 0.8 Ener 0.6 0.6 - 1096 0.4 0.4 50% 0.2 0.2 1009 3100 600 60 60 60 Layer Index [-] Laver Index [-]

#### Observation: Stabilization with Evanescent Wave Model

Numeric Stability vs. Modeling of Physical Properties

(日)

-

Vector Wave Propagation Method Modifications Summary, Results And Outlook

Evanescent Wave Boundary and Model

# Methods For Stabilization

#### **Evanescent Wave Model**

### Complex Propagating Modes (L) vs. Evanescent Wave Model (R)

for variations of waveguide contrast and plane waves at 0° 1,05 1,04 10096 1.03 1.02 gy 1.01 0.99 0.98 0.97 0,96 0.95 59330688 60 0000 Laver Index [-]

Normalized Energy Flux (1.2)

Normalized Energy Flux (2.2)



< ロ > < 同 > < 三 > < 三 >

#### Observation: No Negative Effect on Numeric Stability\*

Conclusion: Continue with Evanescent Wave Model

Numeric Stability

VS.

Modeling of Physical Properties (R)

\*(L) and (R) apply the Evanescent Boundary Threshold

Prof. Dr. Matthias Fertig 12/2021

Conservation Law and the VWPM

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

(日)

#### Methods For Stabilization Anti-Aliasing Filter

#### Sampling Theorem

$$\nu_{samp} > 2 \cdot \nu_{max}$$
Sampling Frequency $\nu_{nyq} = \frac{1}{2} \cdot \nu_{max}$ Nyquist Frequency

$$\nu_{max} = \frac{n}{2} \cdot \frac{1}{X} = \frac{1}{2} \cdot \frac{n}{n \cdot \bigtriangleup X} = \frac{1}{2 \cdot \bigtriangleup x}$$

n = Number of Samples in the Aperture

$$\nu_{nyq} = \frac{1}{2} \cdot \nu_{max} = \frac{1}{4 \cdot \bigtriangleup x} = \frac{n}{4} \cdot \frac{1}{n \cdot \bigtriangleup x} \rightarrow \frac{i_{nyq}}{4} = \frac{n}{4}$$

Maximum Frequency in the Signal

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

Normalized Energy Flux (3.1)

# Methods For Stabilization

Normalized Energy Flux (3.1)

#### FOM=0.951104/1.3516

### Band-Limitation with Anti-Aliasing Filter



#### Observation: Same Results as Evanescent Wave Model\*

Numeric Stability

lity vs.

Modeling of Physical Properties

\* Evanescent Modes In [4] Disappear because No External Reflection.

Prof. Dr. Matthias Fertig 12/2021 Conservation Law and the VWPM

Vector Wave Propagation Method Lateral Field Dependency Modifications Summary, Results And Outlook Methods For Stabilization Lateral Field Dependency in charge-free isotropic\* medium Theory of Lateral Field Dependency for Harmonic Waves  $\rho_{\mathbf{v}} = \nabla \cdot \mathbf{D}$ 1st Maxwell Equation (Gauss Law)  $\mathbf{0} = \nabla \cdot (\mathbf{\epsilon}(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r})) \quad , \qquad \mathbf{E}(\mathbf{r}) = \mathbf{E}_0 \cdot e^{j(\mathbf{k} \cdot \mathbf{r} + \omega \cdot t)}$  $e_{z} = -\frac{1}{\epsilon(\mathbf{r}) \cdot k_{z}} \cdot \left( \left( k_{x} - i \frac{\partial \epsilon(\mathbf{r})}{\partial x} \right) \cdot e_{x} + \left( k_{y} - i \frac{\partial \epsilon(\mathbf{r})}{\partial y} \right) \cdot e_{y} \right)$ 

 $\frac{\partial \epsilon(i,j,k)}{\partial x} = \frac{\epsilon(i+1,j,k) - \epsilon(i-1,j,k)}{2 \cdot \bigtriangleup x}$  Discretization

\*Scalar, Not a Vector

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

## Methods For Stabilization

Lateral Field Dependency in charge-free isotropic medium

FOM= 0.965821 / 1.3196

#### Propagting Modes with Lateral Field Dependency



#### Observation: Stabilization for Small Refractive Index Gradients



Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

< ロ > < 同 > < 三 > < 三 >

## Methods For Stabilization

Refractive Index Gradient Reduction with Spatial System Filter

#### Theory of Spatial $(p \times q)$ Filters

$$f_{i,j} = \frac{1}{p \cdot q} \quad \text{where} \quad 1 \le i \le p \quad , \quad 1 \le j \le q$$
$$\mathbf{D}(m,n) = \sum_{n=1}^{ny} \sum_{m=1}^{nx} \sum_{j=1}^{q} \sum_{i=1}^{p} \mathbf{I}\left(m+i-\frac{p}{2}, n+j-\frac{q}{2}\right) \cdot \mathbf{F}(i,j)$$

$$\begin{array}{c} 3x3 \text{ Filter} \\ \hline \mathbf{F}_{3x3}^{ave} \end{array} = \left( \begin{array}{ccc} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{array} \right)$$

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

< □ > < 同 >

## Methods For Stabilization

Refractive Index Gradient Reduction with Spatial System Filter

FOM= 1.39742 / 1.22717

#### System 7x7 Mean-Average Filter



#### Observation: Instability for Large Index Gradient

Numeric Stability vs. | Modeling of Physical Properties\*

\* See Born& Wolf, Principles Of Optics, 7th Ed., pp. 4, Section 1.1.3

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

## Methods For Stabilization

Refractive Index Gradient Reduction with Spatial System Filter

FOM= 1.45167 / 1.21729

### System 7x7 Mean-Average Filter & Lateral Field Dependency



Normalized Energy Flux (5.1.2)

for variations of waveguide contrast and Gaussian beams at 0°



< A ▶

#### Observation: Lateral Field Dependency Increases Instability

Numeric Stability vs.

Modeling of Physical Properties

Evanescent Wave Boundary and Mode Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

## Methods For Stabilization

Refractive Index Gradient Reduction with Spatial System Filter

FOM= 1.0434 / 1.38272

#### System 7x7 Gaussian Filter ( $\sigma = 1$ )



#### Observation: Gaussian Filter Stabilizes for Plane Wave

Numeric Stability vs.

Modeling of Physical Properties



Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

## Methods For Stabilization

Refractive Index Gradient Reduction with Spatial System Filter

FOM= 1.07047 / 1.35093

#### System 7x7 Gaussian Filter & Lateral Field Dependency



Observation: Lateral Dependency Stabilizes for Gaussian Beam

Numeric Stability vs. Modeling of Physical Properties

Evanescent Wave Boundary and Mode Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

#### Methods For Stabilization Static and Adaptive Low-Pass Filter

#### FOM= 1.1887 / 1.14339

## System 7x7 Mean-Average & Field LPF $(\nu_g = \pm 10 \cdot \nu_1)$



#### Observation: Stabilization for Gaussian but Not Plane Wave

Numeric Stability vs.

Modeling of Physical Properties\*

\*No Propagating Modes Filtered, Some Evanescent Modes in Spectrum (ロト(日)・モート・モート・モート きょうへん

Prof. Dr. Matthias Fertig 12/2021 Conservation Law and the VWPM

Evanescent Wave Boundary and Mode Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

#### Methods For Stabilization Static and Adaptive Low-Pass Filter

FOM= 0.930171 / 0.868776

## System 7x7 Mean-Ave & Field LPF ( $\nu_g = \pm 6 \cdot \nu_1$ )



#### Observation: Stabilization for Gaussian but Not Plane Wave

Evanescent Wave Boundary and Model Anti-Aliasing Filter Lateral Field Dependency Spatial System Filter Static Low-Pass Filter

#### Methods For Stabilization Static and Adaptive Low-Pass Filter

1,4

0.8

0.4

1.2 M 1 FOM= 0.942664 / 0.481618

## System 7x7 Mean-Ave & Field LP-Filter ( $\nu_g = \pm 3 \cdot \nu_1$ )



for variations of waveguide contrast and plane waves at 0°

Layer Index [-]



for variations of waveguide contrast and Gaussian beams at 0°



#### Observation: Too Many Modes Filtered!

æ



# Summary, Results And Outlook

Prof. Dr. Matthias Fertig 12/2021 Conservation Law and the VWPM

< 同 ト < 三 ト < 三 ト

## Summary, Results And Outlook

#### Summary

| Stability | $\theta_{\perp}$ | $\nu_{ev}$   | $\nu_{nyq}$  | $\nabla \mathbf{D}$ | p 	imes q    | LPF          |
|-----------|------------------|--------------|--------------|---------------------|--------------|--------------|
| ++        | $\checkmark$     |              |              |                     |              |              |
|           |                  | $\checkmark$ |              |                     |              |              |
| ++        | $\checkmark$     | $\checkmark$ |              |                     |              |              |
|           |                  |              | $\checkmark$ |                     |              |              |
| +/-       |                  |              |              | $\checkmark$        |              |              |
| +/-       |                  |              |              |                     | $\checkmark$ |              |
| +         |                  |              |              |                     |              | $\checkmark$ |

How is the Conservation Law Secured in Absorbing Medium?

< ロ > < 同 > < 三 > < 三 >

# Summary, Results And Outlook

#### Observations

- Dependency of Energy Flux to Index Gradients
- Dependency of Energy Flux to Type Of Input Field
- Lateral Dependency has Little Effect on Energy Stability
- Promising Results with Boundary Threshold and Filters

#### Conclusions

- $\bullet\,$  Spatial System Filter should Reduce Index Variation to  $10\%\,$
- Static Filters Not Efficient For All Index Gradients and Inputs
- $\rightarrow\,$  Dynamic Filter might Stabilize Energy Flux for All Cases

(4月) (日) (日)

## Summary, Results And Outlook

#### Outlook

- Stabilization For All Cases w/ Adaptive Low-Pass Filter?
- What Is The Impact on Simulation Correctness?
- Correlation Evanescent Modes in Simulation and Waveguide?
- Is the Algorithm Valid for Absorbing Medium?

# Thank Your For Your Patience!

・ 同 ト ・ ヨ ト ・ ヨ ト