Kinematic Modeling of a High Mobility Mars Rover

Speaker: Matthias Fertig

June 2000

International Conference on Robotics & Automation, May 1999

M.Tarokh, G. McDermott, S. Hayati and J.Hung Robotics & Intellegence Systems Laboratory Department of Mathematical & Computer Sciences SanDiego State University Jet Propulsion Laboratory California Institute of Technologie

Introduction

"Rocky 7" by Jet Propulsion Laboratory

CENTRAL DEMANDS

LONG TRAVERSES energy consumption strictly limited

 \rightarrow efficient actuation

 \rightarrow accurate **Inverse Kinematics**

HIGH MOBILITY traverses over rough terrain

 \rightarrow sensible motion system

 \rightarrow A reasonably accurate kinematic model is essential for estimating the rovers actual location and orientation.

University of Mannheim

Introduction

Limitations of the common solutions

The common solutions assume the following limitations:

SURFACE flat and smooth

DOF 2 dimensional XY-plane

and rotation about the z-axis

 \rightarrow This common way is not suited to design a kinematic model of the Rocky 7 Mars Rover.

Introduction

Extension of the common kinematic approach

To get a better suited 6 DOF kinematic model, the conventional 3 DOF kinematic design is enlarged about the following 3 degrees of freedom:

- pitch
- roll
- z-axis translation

University of Mannheim

Steering and rotational slip

Steering and rotational slip cannot be distinguished since:

- both have identically axis
- there are no sensing capabilities

 \rightarrow Jacobian approach cannot be used for steering commands!

 \rightarrow Geometrical Approach

Rocky 7 Overview General Rover Attributes		
Width	48cm	
Length	64cm	
Height	$32 \mathrm{cm}$	
NOM. SPEED	$10\frac{cm}{sec} = 0.36\frac{km}{h}$	
Mobility-	2 Steerable Wheels	
System	2 Main Rockers and	
	2 Small Rockers	

University of Mannheim

Rocky 7 Overview Relevant Rover Attributes		
Mobility	three joints rocker-bogie system	
System	differential connection	
	$\rightarrow \beta_1 = -\beta_2 = \beta$	
	steering range $\pm 135^{\circ}$	
	$\rightarrow \Psi_1, \ \Psi_2 \in [0^\circ, 270^\circ]$	
ACTUATION	6 for angular velocities 2 for steering	
	sensors for body roll	
	and body pitch	

University of Mannheim

Rocky 7 Overwiew Relevant Rover Attributes (Cont.) potentiometers at each connection ROCKER BOGIE $\rightarrow \beta, \rho_1, \rho_2$ WHEELS angular positions and first derivative measured by encoders $\rightarrow \Theta_i, \dot{\Theta}_i$ STEERING steering angles measured by encoders $\rightarrow \Psi_1, \Psi_2$

Slide 12

Forward Kinematics Assumptions and Forward Approach		
WHEELS	Jacobian matrices are used to	
	perform the transformation	
	Jacobian Approach	
Assumption 1	single fixed contact point	
	for each wheel	
Assumption 2	slip occurs only about the axis	
	through the modelled contact point	

Coordinate Frames

The Denavit-Hartenberg notation

A transformation among two coordinate frames in the kinematic chain can be separate into the following basic transformations:

ROTATION	γ about the Z-axis
TRANSITION	d along the Z-axis
TRANSITION	a along the X-axis
ROTATION	rotation α about the X-axis

University of Mannheim

The Transformation-Matrix

$$\mathbf{T}_{j,i} = \begin{bmatrix} \cos(\gamma_j) & -\sin(\gamma_j) \cdot \cos(\alpha_j) & \sin(\gamma_j) \cdot \sin(\alpha_j) & a_j \cdot \cos(\gamma_j) \\ \sin(\gamma_j) & \cos(\gamma_j) \cdot \cos(\alpha_j) & -\cos(\gamma_j) \cdot \sin(\alpha_j) & a_j \cdot \sin(\gamma_j) \\ 0 & \sin(\alpha_j) & \cos(\alpha_j) & d_j \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$a_j, d_j, \gamma_j, \alpha_j$$
$$\mathbf{D-H \ parameters}$$

University of Mannheim

The D-H parameters

\mathbf{Frame}	γ (°)	d(in)	a(in)	α (°)
D	0	0	0	-90
S1	eta	7.95	11.35	90
S2	$-\beta$	-7.95	11.35	90
$ ho_1$	$140.32 + \beta$	7.95	6.33	0
$ ho_2$	$140.32 - \beta$	-7.95	6.33	0
A1	Ψ_1	-4.92	0	-90
A2	Ψ_2	-4.92	0	-90
A3	$-122.66 + \rho_1$	0	2.89	0
A4	$-122.66 + \rho_2$	0	2.89	0
A5	$22.04 + \rho_1$	0	2.89	0
A6	$22.04 + \rho_2$	0	2.89	0

Transformation Principle

from the wheel 1 axle frame A1 to the rover body reference frame R:

$$\mathbf{T}_{R,A1} = \mathbf{T}_{R,D} \ \mathbf{T}_{D,S1} \ \mathbf{T}_{S1,A1}$$

University of Mannheim

The D-H Parameters for M_i and C_i

Frame	$\gamma(^{\circ})$	d(in)	a(in)	$\alpha(^{\circ})$
C_i	?	0	0	-90
M_i	ζ_i	$-R_w$	$-R_w\cdot\Theta_i$	0

The kinematic chain is extended by two additional transformation-matrices \mathbf{T}_{A_i,C_i} and \mathbf{T}_{C_i,M_i} .

Complete Kinematic Chain

$$\mathbf{T}_{R,M_1} = \mathbf{T}_{R,D} \cdot \mathbf{T}_{D,S_1} \cdot \mathbf{T}_{S_1,A_1} \cdot \mathbf{T}_{A_1,C_1} \cdot \mathbf{T}_{C_1,M_1}$$

Derivative of Position and Orientation by the time

The instantaneous transformation to express the motion of the rover.

$$\dot{\mathbf{T}}_{\hat{R},R} = \mathbf{T}_{\hat{R},\hat{M}_i} \cdot \mathbf{T}_{M_i,R}$$

leads to

$$\dot{\mathbf{T}}_{\hat{R},R} = \begin{bmatrix} 0 & -\dot{\Phi} & \dot{p} & \dot{x} \\ \dot{\Phi} & 0 & -\dot{r} & \dot{y} \\ -\dot{p} & \dot{r} & 0 & \dot{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

with

$$\mathbf{T}_{M_i,R} = (\mathbf{T}_{R,M_i})^{-1}$$

University of Mannheim

Forward Kinematics Derivatives Position and Orientation (Cont.) The Elements of the matrix $\mathbf{T}_{\hat{R},R}$ $\dot{x}, \dot{y}, \dot{z}, \dot{p}, \dot{r}, \dot{\Phi}$ are functions of D-H Parameters, bogie, rocker and steering angles

$$\beta, \rho_1, \rho_2, \Psi_1, \Psi_2$$

and the angular rates

$$\dot{eta},\dot{
ho}_1,\dot{
ho}_2,\dot{\Psi}_1,\dot{\Psi}_2$$

University of Mannheim

Wheels 1 and 2 Jacobians

Setting the corresponding elements on the right and left hand side leads to

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\Phi} \\ \dot{p} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} R_w \cdot \cos(\beta) \cdot \cos(\Psi_i) & 0 & b_i \cdot d_{S_i} \cdot \cos(\beta) \\ R_w \cdot \sin(\Psi_i) & 0 & a_{S_i} \\ b_i \cdot R_w \cdot \sin(\beta) \cdot \cos(\Psi_i) & 0 & d_{S_i} \cdot \sin(\beta) \\ 0 & 0 & -\cos(\beta) \\ 0 & 0 & b_i & 0 \\ 0 & 0 & b_i \cdot \sin(\beta) \end{bmatrix} \cdot \begin{bmatrix} \dot{\Theta}_i \\ \dot{\beta} \\ \dot{\eta}_i \end{bmatrix}$$
$$\dot{i} \in [1, 2] \qquad b_1 = -1 \qquad b_2 = 1 \\ \dot{\eta}_i = \dot{\zeta}_i + \dot{\Psi}_i \qquad a_{S_i} = DH - Param \qquad d_{S_i} = DH - Param$$

University of Mannheim

Wheels 3 and 5 Jacobians

University of Mannheim

Wheels 4 and 6 Jacobian

University of Mannheim

Analysis, Simplification and Rearrangement

PITCH AND ROLLmeasured by accelerometers $\rightarrow \dot{p}$ is redundant (or vice versa) \rightarrow removal of $\dot{\beta}$ and \dot{p} REARRANGEMENTcombine $\dot{\eta}$ with \dot{u} combine $\dot{r}, \dot{\Theta}_i$ and ρ_i

University of Mannheim

Simplified Wheels 1 and 2 Jacobian

University of Mannheim

Simplified Wheels 3 and 5 Jacobian

$$\begin{bmatrix} 1 & 0 & 0 & 0 & d_{S_i} \cos(\sigma_1) \\ 0 & 1 & 0 & 0 & -K_i \\ 0 & 0 & 1 & 0 & -d_{S_i} \cos(\sigma_1) \\ 0 & 0 & 0 & 1 & \cos(\sigma_1) \\ 0 & 0 & 0 & \sin(\sigma_1) \end{bmatrix} \cdot \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\Phi} \\ \dot{\eta} \end{bmatrix} = \begin{bmatrix} R_w \cos(\sigma_1) & -a_{\rho_1} \sin(\gamma_{\rho_1}) & 0 \\ 0 & 0 & 0 \\ -R_w \sin(\sigma_1) & -a_{\rho_1} \cos(\gamma_{\rho_1}) & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} \dot{\theta}_i \\ \dot{\rho}_1 \\ \dot{r} \end{bmatrix}$$

University of Mannheim

Simplified Wheels 4 and 6 Jacobian

$$\begin{bmatrix} 1 & 0 & 0 & 0 & d_{S_2} \cos(\sigma_2) \\ 0 & 1 & 0 & 0 & -K_i \\ 0 & 0 & 1 & 0 & -d_{S_2} \cos(\sigma_2) \\ 0 & 0 & 0 & 1 & \cos(\sigma_2) \\ 0 & 0 & 0 & \sin(\sigma_2) \end{bmatrix} \cdot \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\Phi} \\ \dot{\eta} \end{bmatrix} = \begin{bmatrix} R_w \cos(\sigma_2) & -a_{\rho_2} \sin(\gamma_{\rho_2}) & 0 \\ 0 & 0 & 0 \\ -R_w \sin(\sigma_2) & -a_{\rho_2} \cos(\gamma_{\rho_2}) & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} \dot{\theta}_i \\ \dot{\rho}_2 \\ \dot{r} \end{bmatrix}$$

The Composite Kinematic Equation

University of Mannheim

The Least Square Solution

- PROBLEM Simplifications leads to Errors
- GOAL Minimize the calculation-error
- SOLUTION Weighting matrix $\mathbf{W} = diag(\mathbf{W}_1 \dots \mathbf{W}_6)$
 - $\mathbf{W}_i = \lambda_i \cdot \mathbf{S}$
 - $\mathbf{S}=5\times 5$ diagonal unity matrix
- RESULT λ_i for minimum error

The Forward Kinematic Equation

$$\dot{u}_{est} = \left[\sum_{i=1}^{6} \lambda_i \mathbf{G}_i \mathbf{E}\right]^{-1} \left[\begin{array}{ccc} \lambda_1 \mathbf{G}_1 \mathbf{J}_{S_1} & \dots & \lambda_6 \mathbf{G}_6 \mathbf{J}_{S_6} \end{array}\right] \cdot \dot{q}_S$$

with

$$\mathbf{G}_{i} = \mathbf{E}^{T} \cdot \left[\mathbf{S} \mathbf{J}_{\eta_{i}} \cdot \underbrace{\left(\mathbf{J}_{\eta_{i}}^{T} \mathbf{S} \mathbf{J}_{\eta_{i}} \right)^{-1}}_{scalar \ quantity} \cdot \mathbf{J}_{\eta_{i}}^{T} - \mathbf{I} \right] \cdot \mathbf{S}$$

University of Mannheim

Forward Kinematics Conclusions • Solution Exact \iff Least Square Error is Zero • only a 4×4 matrix inversion in computation of \dot{u}_{est} • no matrix inversions are involved in computing G_i

University of Mannheim

June 28, 2000

Slide 32

- GOAL determine the individual wheel velocities to accomplish desired rover motion
- INPUT desired rover motion is given by forward velocity and turning rate
- NOTE it is sufficient to actuate

any opposing pair of wheels

NOTE wheels 1 and 2 must be provided with steering commands

Inverse Kinematics Geometrical vs. Jacobian Approach		
Problem	steering and rotational slip cannot be distinguished since the rotational axis are identical	
Consequence	Jacobian approach not useable	
Solution	Geometrical approach to determine the desired steering angles	

University of Mannheim

University of Mannheim

Wheel Rolling Velocities (Cont.)

The forward kinematics gives:

$$\dot{x}_d = R_w \cos(\beta) \cos(\Psi_i) \dot{\theta}_i + b_i d_{S_1} \cos(\beta) \eta_i$$
$$\dot{\Phi}_d = -\cos(\beta) \dot{\eta}_i$$

Insert and solve by θ_i :

$$\dot{\theta}_i = \frac{\dot{x}_d - d_{S_1} \dot{\Phi}_d}{R_w \underbrace{\cos(\beta) \cos(\Psi_i)}_{crit.}} \quad , \quad (i = 1, 2)$$

(Note: Rolling Velocities for wheels 3, 5 and 4, 6 are obtained by the same way)

University of Mannheim

Steering Angles and Geometrical Approach

PROCEDURE•Estimation of an instantaneousturn center based on the fournon-steerable wheels

• Determination of the steering angles with this estimated center

Geometrical Approach

Inverse Kinematics Steering Angles and Estimation of the turn center Extract the \dot{x} and Φ components PROCEDURE of the forward kinematics for each non-steerable wheel \rightarrow desired quantities \dot{x}_d, Φ_d instantaneous turn radius r_i $r_i = \frac{\dot{x}_i}{\dot{\Phi}_i}$ $L_i = \mathbf{T}_{R,C_i} \cdot y_{C_i}$ • $L_R = \frac{1}{4} \left(\cdot \sum_{i=3}^6 L_i \right)$

Example for wheel 3 - The Turn Center Location

$$\dot{\Phi}_3 = -\dot{\eta}_3 = \frac{\dot{\Phi}_d}{\cos(\sigma_1)}$$

$$\dot{x}_{3} = R_{w} \cdot \dot{\theta}_{3} = \frac{\dot{x}_{d} - d_{S_{1}} \dot{\Phi}_{d} + a_{\rho_{1}} \dot{\rho}_{1} \sin(\gamma_{\rho_{1}})}{\cos(\sigma_{1})}$$

$$r_3 = \frac{\dot{x}_3}{\dot{\Phi}_3} = \frac{\dot{x}_3 + a_{\rho_1}\dot{\rho}_1\sin(\gamma_{\rho_1})}{\dot{\Phi}_d} - d_{S_1}$$

$$L_3 = \mathbf{T}_{R,D} \mathbf{T}_{D,\rho_1} \mathbf{T}_{\rho_1,A_3} \mathbf{T}_{A_3,C_3} \cdot \underbrace{\begin{bmatrix} 0 & r_3 & 0 & 1 \end{bmatrix}^T}_{y_{C_3}}$$

University of Mannheim

Example for wheel 3 (Cont.)

$$L_{3} = \begin{bmatrix} a_{A_{3}} \cos(\gamma_{\rho_{1}} + \gamma_{A_{3}}) + a_{\rho_{1}} \cos(\gamma_{\rho_{1}}) \\ \frac{\dot{x} + a_{\rho_{1}}\dot{\rho}_{1} \sin(\gamma_{\rho_{1}})}{\dot{\phi}_{d}} \\ -a_{A_{3}} \sin(\gamma_{\rho_{1}} + \gamma_{A_{3}}) - a_{\rho_{1}} \sin(\gamma_{\rho_{1}}) \\ 1 \end{bmatrix}$$

University of Mannheim

The estimated turn center

$$L_{R} = \begin{bmatrix} \frac{a_{A_{3}}}{4} \sum_{i=3}^{6} (\cos(\Gamma_{i})) + \frac{a_{\rho_{1}}}{2} (\cos(\gamma_{\rho_{1}}) + \cos(\gamma_{\rho_{2}})) \\ \frac{\dot{x}_{d}}{\dot{\Phi}_{d}} + \frac{a_{\rho_{1}}}{2\dot{\Phi}_{d}} (\dot{\rho}_{1} \sin(\gamma_{\rho_{1}}) + \dot{\rho}_{2} \sin(\gamma_{\rho_{2}})) \\ - \frac{a_{A_{3}}}{4} \sum_{i=3}^{6} (\sin(\Gamma_{i})) - \frac{a_{\rho_{1}}}{2} (\sin(\gamma_{\rho_{1}}) + \sin(\gamma_{\rho_{2}})) \\ 1 \end{bmatrix}$$

where

$$\Gamma_i = \begin{cases} \sigma_1 - \gamma_{C_i} & i = 3, 5\\ \sigma_2 - \gamma_{C_i} & i = 4, 6 \end{cases}$$

University of Mannheim

Steering Angle Calculation

University of Mannheim

The instantaneous turn center vector $\vec{r_i}$

$$\begin{bmatrix} r_{xi} \\ r_{yi} \end{bmatrix} = \begin{bmatrix} \frac{a_{A3}}{4} \cdot \sum_{j=3}^{6} \cos(\beta_i + \Gamma_j) + \frac{a_{\rho_1}}{2} \left(\cos(\beta_i + \gamma_{\rho_1}) + \cos(\beta_i + \gamma_{\rho_2}) \right) - a_{S_i} \\ \frac{\dot{x}_d}{\dot{\Phi}_d} + \frac{a_{\rho_1}}{2\dot{\Phi}_d} \left(\dot{\rho}_1 \sin(\gamma_{\rho_1}) + \dot{\rho}_2 \sin(\gamma_{\rho_2}) \right) - d_{S_i} \end{bmatrix}$$
NOTE: Since the steering axis is along the z-axis

NOTE: Since the steering axis is along the z-axis, r_i is projected to the xy-plane.

University of Mannheim

The Full Inverse Kinematic Solution

$$\begin{split} \Psi_i &= \arctan\left(\frac{-sign(r_{yi})\cdot r_{xi}}{|r_{yi}|}\right) \\ \dot{\theta}_i &= \frac{\dot{x}_d - d_{S_1}\dot{\Phi}_d}{R_w \cos(\beta)\cos(\Psi_i)} \quad , \ i \in 1,2 \\ \dot{\theta}_i &= \frac{\dot{x}_d - d_{S_1}\dot{\Phi}_d + a_{\rho_1}\sin(\gamma_{\rho_1})\dot{\rho}_1}{R_w \cos(\sigma_2)} \quad , \ i \in 3,5 \\ \dot{\theta}_i &= \frac{\dot{x}_d - d_{S_1}\dot{\Phi}_d + a_{\rho_1}\sin(\gamma_{\rho_2})\dot{\rho}_2}{R_w \cos(\sigma_2)} \quad , \ i \in 4,6 \end{split}$$

University of Mannheim

Conclusions

- available methods only for flat surfaces \rightarrow this approach can be used for rough terrain
- rotation axis of slip and steering coincide
 - \rightarrow the Jacobian approach is not applicable
 - \rightarrow Geometrical Approach
- quite general approach
 - \rightarrow easy modification for other kinematic configurations