Kinematic Modeling of a High Mobility Mars Rover

Speaker: Matthias Fertig

June 2000

International Conference on Robotics \& Automation, May 1999

M.Tarokh, G. McDermott, S. Hayati and J.Hung
Robotics \& Intellegence Systems Laboratory
Department of Mathematical \& Computer Sciences
SanDiego State University
Jet Propulsion Laboratory
California Institute of Technologie

Introduction

"Rocky 7" by Jet Propulsion Laboratory

Central Demands	
Long Traverses	energy consumption strictly limited
	\rightarrow efficient actuation
High Mobility	\rightarrow accurate Inverse Kinematics
	\rightarrow traverses over rough terrain

\rightarrow A reasonably accurate kinematic model is essential for estimating the rovers actual location and orientation.

Introduction

Limitations of the common solutions

The common solutions assume the following limitations:

Surface	flat and smooth
Dof	2 dimensional XY-plane
	and rotation about the z-axis

\rightarrow This common way is not suited to design a kinematic model of the Rocky 7 Mars Rover.

Introduction

Extension of the common kinematic approach

To get a better suited 6 DOF kinematic model, the conventional 3 DOF kinematic design is enlarged about the following 3 degrees of freedom:

- pitch
- roll
- z-axis translation

Introduction

Forward Kinematics

Actuation uses sensory information

Goal Estimation of position and orientation

Approach Jacobian Matrix for each wheel to build up the "Kinematic Chain"

Introduction

Forward Kinematics

$$
\begin{array}{ll}
\text { InPuT } & \text { Wheel angular velocities } \dot{\Theta}_{i} \\
& \text { Wheel turning rate } \dot{\eta}_{i} \\
& \text { Bogie angular rate } \dot{\beta}_{i}
\end{array}
$$

Output Rover position rate vector \dot{u}
Pitch Rate \dot{p}
Roll Rate \dot{r}

Introduction

Inverse Kinematics

Input Rover velocity \dot{x}_{d}
Rover heading rate $\dot{\Phi}_{d}$

Output Wheels rotational velocities $\dot{\Theta}_{i}$
Absolute wheels steering angles Ψ_{i}

Introduction

Steering and rotational slip

Steering and rotational slip cannot be distinguished since:

- both have identically axis
- there are no sensing capabilities
\rightarrow Jacobian approach cannot be used for steering commands!
\rightarrow Geometrical Approach

Rocky 7 Overview

General Rover Attributes

Width	48 cm
Length	64 cm
Height	32 cm
nom. Speed	$10 \frac{\mathrm{~cm}}{\mathrm{sec}}=0.36 \frac{\mathrm{~km}}{\mathrm{~h}}$
Mobility-	2 Steerable Wheels
System	2 Main Rockers and
	2 Small Rockers

Rocky 7 Overview

Relevant Rover Attributes

Mobility three joints rocker-bogie system
SYSTEM differential connection
$\rightarrow \beta_{1}=-\beta_{2}=\beta$
steering range $\pm 135^{\circ}$
$\rightarrow \Psi_{1}, \Psi_{2} \in\left[0^{\circ}, 270^{\circ}\right]$
Actuation 6 for angular velocities 2 for steering sensors for body roll
and body pitch

Rocky 7 Overwiew

Relevant Rover Attributes (Cont.)

Rocker Bogie potentiometers at each connection

$$
\rightarrow \beta, \rho_{1}, \rho_{2}
$$

Wheels angular positions and first derivative measured by encoders $\rightarrow \Theta_{i}, \dot{\Theta}_{i}$

Steering
steering angles measured by encoders $\rightarrow \Psi_{1}, \Psi_{2}$

Forward Kinematics
 Assumptions and Forward Approach

Wheels Jacobian matrices are used to perform the transformation
Jacobian Approach
Assumption 1 single fixed contact point for each wheel

Assumption 2 slip occurs only about the axis through the modelled contact point

Forward Kinematics

Coordinate Frames

Forward Kinematics

The Denavit-Hartenberg notation

A transformation among two coordinate frames in the kinematic chain can be separate into the following basic transformations:

Rotation $\quad \gamma$ about the Z-axis
Transition d along the Z-axis
Transition a along the X -axis
Rotation rotation α about the X -axis

Forward Kinematics

The Transformation-Matrix

$\mathbf{T}_{j, i}=$
$\left[\begin{array}{cccc}\cos \left(\gamma_{j}\right) & -\sin \left(\gamma_{j}\right) \cdot \cos \left(\alpha_{j}\right) & \sin \left(\gamma_{j}\right) \cdot \sin \left(\alpha_{j}\right) & a_{j} \cdot \cos \left(\gamma_{j}\right) \\ \sin \left(\gamma_{j}\right) & \cos \left(\gamma_{j}\right) \cdot \cos \left(\alpha_{j}\right) & -\cos \left(\gamma_{j}\right) \cdot \sin \left(\alpha_{j}\right) & a_{j} \cdot \sin \left(\gamma_{j}\right) \\ 0 & \sin \left(\alpha_{j}\right) & \cos \left(\alpha_{j}\right) & d_{j} \\ 0 & 0 & 0 & 1\end{array}\right]$

D-H parameters

Forward Kinematics

The D-H parameters

Frame	$\gamma\left(^{\circ}\right)$	$\mathrm{d}(\mathrm{in})$	$\mathrm{a}(\mathrm{in})$	$\alpha\left(^{\circ}\right)$
D	0	0	0	-90
S 1	β	7.95	11.35	90
S 2	$-\beta$	-7.95	11.35	90
ρ_{1}	$140.32+\beta$	7.95	6.33	0
ρ_{2}	$140.32-\beta$	-7.95	6.33	0
A 1	Ψ_{1}	-4.92	0	-90
A 2	Ψ_{2}	-4.92	0	-90
A 3	$-122.66+\rho_{1}$	0	2.89	0
A 4	$-122.66+\rho_{2}$	0	2.89	0
A 5	$22.04+\rho_{1}$	0	2.89	0
A 6	$22.04+\rho_{2}$	0	2.89	0

Forward Kinematics

Transformation Principle

from the wheel 1 axle frame A1
to the rover body reference frame R :

$$
\mathbf{T}_{R, A 1}=\mathbf{T}_{R, D} \mathbf{T}_{D, S 1} \mathbf{T}_{S 1, A 1}
$$

Forward Kinematics

Contact- and Motion Frame

Contact Frame	Wheel contact point
	- rotation of A_{i} about the Z-axis - followed by a 90° rotation about the X -axis
Motion Frame	Wheel roll and rotational slip - translation along the Z-axis by the wheel radius

Forward Kinematics

The D-H Parameters for M_{i} and C_{i}

Frame	$\gamma\left({ }^{\circ}\right)$	$\mathrm{d}(\mathrm{in})$	$\mathrm{a}(\mathrm{in})$	$\alpha\left({ }^{\circ}\right)$
C_{i}	$?$	0	0	-90
M_{i}	ζ_{i}	$-R_{w}$	$-R_{w} \cdot \Theta_{i}$	0

The kinematic chain is extended by two additional transformation-matrices $\mathbf{T}_{A_{i}, C_{i}}$ and $\mathbf{T}_{C_{i}, M_{i}}$.

$$
\begin{gathered}
\text { Complete Kinematic Chain } \\
\mathbf{T}_{R, M_{1}}=\mathbf{T}_{R, D} \cdot \mathbf{T}_{D, S_{1}} \cdot \mathbf{T}_{S_{1}, A_{1}} \cdot \mathbf{T}_{A_{1}, C_{1}} \cdot \mathbf{T}_{C_{1}, M_{1}} \\
\hline
\end{gathered}
$$

Forward Kinematics

Derivative of Position and Orientation by the time

The instantaneous transformation to express the motion of the rover.

$$
\dot{\mathbf{T}}_{\hat{R}, R}=\mathbf{T}_{\hat{R}, \hat{M}_{i}} \cdot \mathbf{T}_{M_{i}, R}
$$

leads to

$$
\dot{\mathrm{T}}_{\hat{R}, R}=\left[\begin{array}{cccc}
0 & -\dot{\Phi} & \dot{p} & \dot{x} \\
\dot{\Phi} & 0 & -\dot{r} & \dot{y} \\
-\dot{p} & \dot{r} & 0 & \dot{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

with

$$
\mathbf{T}_{M_{i}, R}=\left(\mathbf{T}_{R, M_{i}}\right)^{-1}
$$

Forward Kinematics

Derivatives Position and Orientation (Cont.)

The Elements of the matrix $\dot{\mathbf{T}}_{\hat{R}, R}$

$$
\dot{x}, \dot{y}, \dot{z}, \dot{p}, \dot{r}, \dot{\Phi}
$$

are functions of D-H Parameters, bogie, rocker and steering angles

$$
\beta, \rho_{1}, \rho_{2}, \Psi_{1}, \Psi_{2}
$$

and the angular rates

$$
\dot{\beta}, \dot{\rho}_{1}, \dot{\rho}_{2}, \dot{\Psi}_{1}, \dot{\Psi}_{2}
$$

Forward Kinematics

Wheels 1 and 2 Jacobians

Setting the corresponding elements on the right and left hand side leads to

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z} \\
\dot{\Phi} \\
\dot{p} \\
\dot{r}
\end{array}\right]=\left[\begin{array}{ccc}
R_{w} \cdot \cos (\beta) \cdot \cos \left(\Psi_{i}\right) & 0 & b_{i} \cdot d_{S_{i}} \cdot \cos (\beta) \\
R_{w} \cdot \sin \left(\Psi_{i}\right) & 0 & a_{S_{i}} \\
b_{i} \cdot R_{w} \cdot \sin (\beta) \cdot \cos \left(\Psi_{i}\right) & 0 & d_{S_{i}} \cdot \sin (\beta) \\
0 & 0 & -\cos (\beta) \\
0 & b_{i} & 0 \\
0 & 0 & b_{i} \cdot \sin (\beta)
\end{array}\right] \cdot\left[\begin{array}{c}
\dot{\Theta}_{i} \\
\dot{\beta} \\
\dot{\eta}_{i}
\end{array}\right]} \\
& i \in[1,2] \\
& \dot{\eta}_{i}=\dot{\zeta}_{i}+\dot{\Psi}_{i} \quad b_{1}=-1 \\
& a_{S_{i}}=D H-\text { Param }
\end{aligned}
$$

Forward Kinematics

Wheels 3 and 5 Jacobians

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z} \\
\dot{\Phi} \\
\dot{p} \\
\dot{r}
\end{array}\right]=\left[\begin{array}{cccc}
R_{w} \cos \left(\sigma_{1}\right) & 0 & a \rho_{1} \sin \left(\gamma_{\rho_{1}}\right) & -d_{S_{i}} \cos \left(\sigma_{1}\right) \\
0 & 0 & 0 & K_{i} \\
-R_{w} \sin \left(\sigma_{1}\right) & 0 & -a \rho_{1} \cos \left(\gamma_{\rho_{1}}\right) & d_{S_{i}} \sin \left(\sigma_{1}\right) \\
0 & 0 & 0 & -\cos \left(\sigma_{1}\right) \\
0 & -1 & -1 & 0 \\
0 & 0 & 0 & -\sin \left(\sigma_{1}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
\dot{\Theta}_{i} \\
\dot{\beta} \\
\dot{\rho}_{1} \\
\dot{\eta}_{i}
\end{array}\right]
$$

$$
\begin{array}{ll}
i \in[3,5] & \sigma_{1}=\rho_{1}+\beta \\
K_{i}=a_{A_{i}} \cos \left(\gamma_{C_{i}}\right) & a \rho_{1}, a_{A_{3}}=D H-P a r a m \\
\quad+a \rho_{1} \cos \left(\gamma_{C_{i}}+\gamma_{A_{i}}\right) & \gamma C_{i}, \gamma_{A_{i}}=D H-P a r a m \\
\dot{\eta}_{i}=\dot{\theta}_{i} & \rho_{1}=\text { leftrockerangle }
\end{array}
$$

Forward Kinematics

Wheels 4 and 6 Jacobian

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z} \\
\dot{\Phi} \\
\dot{p} \\
\dot{r}
\end{array}\right]=\left[\begin{array}{cccc}
R_{w} \cos \left(\sigma_{2}\right) & 0 & a_{\rho_{2}} \sin \left(\gamma_{\rho_{2}}\right) & -d_{S_{i}} \cos \left(\sigma_{2}\right) \\
0 & 0 & 0 & K_{i} \\
-R_{w} \sin \left(\sigma_{2}\right) & 0 & -a_{\rho_{2}} \cos \left(\gamma_{\rho_{2}}\right) & d_{S_{i}} \sin \left(\sigma_{2}\right) \\
0 & 0 & 0 & -\cos \left(\sigma_{2}\right) \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & -\sin \left(\sigma_{2}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
\dot{\Theta}_{i} \\
\dot{\beta} \\
\dot{\rho}_{2} \\
\dot{\eta}_{i}
\end{array}\right]
$$

$$
\begin{aligned}
& i \in[4,6] \\
& K_{i}= a_{A_{i}} \cos \left(\gamma_{C_{i}}\right) \\
& \quad+a \rho_{2} \cos \left(\gamma_{C_{i}}+\gamma_{A_{i}}\right) \\
& \dot{\eta}_{i}= \dot{\theta}_{i}
\end{aligned}
$$

$$
\sigma_{2}=\rho_{2}-\beta
$$

$$
a_{\rho_{2}}, a_{A_{4}}=D H-\text { Param }
$$

$$
\gamma C_{i}, \gamma_{A_{i}}=D H-\text { Param }
$$

$$
\rho_{2}=\text { right rocker angle }
$$

Forward Kinematics

Analysis, Simplification and Rearrangement

Pitch and Roll measured by accelerometers
$\rightarrow \dot{p}$ is redundant (or vice versa)
\rightarrow removal of $\dot{\beta}$ and \dot{p}
Rearrangement combine $\dot{\eta}$ with \dot{u}
combine $\dot{r}, \dot{\Theta}_{i}$ and ρ_{i}

Forward Kinematics
Simplified Wheels 1 and 2 Jacobian

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & b_{1} d_{S_{i}} \cos \left(\sigma_{1}\right) \\
0 & 1 & 0 & 0 & a_{S_{i}} \\
0 & 0 & 1 & 0 & -d_{S_{i}} \sin (\beta) \\
0 & 0 & 0 & 1 & \cos (\beta) \\
0 & 0 & 0 & 0 & b_{1} \sin (\beta)
\end{array}\right] \cdot\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z} \\
\dot{\Phi} \\
\dot{\eta}
\end{array}\right]=} \\
& {\left[\begin{array}{ccc}
R_{w} \cos (\beta) \cos \left(\Psi_{i}\right) & 0 \\
R_{w} \sin \left(\Psi_{i}\right) & 0 \\
b_{i} R_{w} \sin (\beta) \cos \left(\Psi_{i}\right) & 0 \\
0 & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{c}
\dot{\theta}_{i} \\
\dot{\rho}_{1} \\
\dot{r}
\end{array}\right]}
\end{aligned}
$$

Forward Kinematics
Simplified Wheels 3 and 5 Jacobian

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & d_{S_{i}} \cos \left(\sigma_{1}\right) \\
0 & 1 & 0 & 0 & -K_{i} \\
0 & 0 & 1 & 0 & -d_{S_{i}} \cos \left(\sigma_{1}\right) \\
0 & 0 & 0 & 1 & \cos \left(\sigma_{1}\right) \\
0 & 0 & 0 & 0 & \sin \left(\sigma_{1}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z} \\
\dot{\Phi} \\
\dot{\eta}
\end{array}\right]=} \\
& {\left[\begin{array}{ccc}
R_{w} \cos \left(\sigma_{1}\right) & -a \rho_{1} \sin \left(\gamma_{\rho_{1}}\right) & 0 \\
0 & 0 & 0 \\
-R_{w} \sin \left(\sigma_{1}\right) & -a \rho_{1} \cos \left(\gamma_{\rho_{1}}\right) & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right] \cdot\left[\begin{array}{c}
\dot{\theta}_{i} \\
\dot{\rho}_{1} \\
\dot{r}
\end{array}\right]}
\end{aligned}
$$

Forward Kinematics
Simplified Wheels 4 and 6 Jacobian

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & d_{S_{2}} \cos \left(\sigma_{2}\right) \\
0 & 1 & 0 & 0 & -K_{i} \\
0 & 0 & 1 & 0 & -d_{S_{2}} \cos \left(\sigma_{2}\right) \\
0 & 0 & 0 & 1 & \cos \left(\sigma_{2}\right) \\
0 & 0 & 0 & 0 & \sin \left(\sigma_{2}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z} \\
\dot{\Phi} \\
\dot{\eta}
\end{array}\right]=} \\
& {\left[\begin{array}{ccc}
R_{w} \cos \left(\sigma_{2}\right) & -a \rho_{2} \sin \left(\gamma_{\rho_{2}}\right) & 0 \\
0 & 0 & 0 \\
-R_{w} \sin \left(\sigma_{2}\right) & -a \rho_{2} \cos \left(\gamma_{\rho_{2}}\right) & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right] \cdot\left[\begin{array}{c}
\dot{\theta} i \\
\dot{\rho}_{2} \\
\dot{r}
\end{array}\right]}
\end{aligned}
$$

Forward Kinematics

The Composite Kinematic Equation

General Form

$$
\left[\begin{array}{ll}
\mathbf{E} & \mathbf{J}_{\eta_{i}}
\end{array}\right] \cdot\left[\begin{array}{c}
\dot{u} \\
\eta_{i}
\end{array}\right]=\mathbf{J}_{S_{i}} \cdot \dot{q}_{S_{i}}
$$

Composite Equ. $\mathbf{A} \cdot\left[\begin{array}{c}\dot{u} \\ \eta_{i}\end{array}\right]=\mathbf{J}_{S} \cdot \dot{q}_{S}$

Forward Kinematics

The Least Square Solution

Problem Simplifications leads to Errors
Goal Minimize the calculation-error
Solution Weighting matrix $\mathbf{W}=\operatorname{diag}\left(\mathbf{W}_{\mathbf{1}} \ldots \mathbf{W}_{6}\right)$
$\mathbf{W}_{i}=\lambda_{i} \cdot \mathbf{S}$
$\mathbf{S}=5 \times 5$ diagonal unity matrix
Result $\quad \lambda_{i}$ for minimum error

Forward Kinematics

The Forward Kinematic Equation

$$
\dot{u}_{e s t}=\left[\begin{array}{lll}
\left.\sum_{i=1}^{6} \lambda_{i} \mathbf{G}_{i} \mathbf{E}\right]^{-1} \cdot\left[\begin{array}{lll}
\lambda_{1} \mathbf{G}_{1} \mathbf{J}_{S_{1}} & \ldots & \lambda_{6} \mathbf{G}_{6} \mathbf{J}_{S_{6}}
\end{array}\right] \cdot \dot{q}_{S}
\end{array}\right.
$$

with

$$
\mathbf{G}_{i}=\mathbf{E}^{T} \cdot[\mathbf{S} \mathbf{J}_{\eta_{i}} \cdot \underbrace{\left(\mathbf{J}_{\eta_{i}}^{T} \mathbf{S} \mathbf{J}_{\eta_{i}}\right)^{-1}}_{\text {scalar quantity }} \cdot \mathbf{J}_{\eta_{i}}^{T}-\mathbf{I}] \cdot \mathbf{S}
$$

Forward Kinematics

Conclusions

- Solution Exact \Longleftrightarrow Least Square Error is Zero
- only a 4×4 matrix inversion in computation of $\dot{u}_{\text {est }}$
- no matrix inversions are involved in computing G_{i}

Inverse Kinematics

Goal determine the individual wheel velocities to accomplish desired rover motion
Input desired rover motion is given by forward velocity and turning rate
Note it is sufficient to actuate any opposing pair of wheels

Note wheels 1 and 2 must be provided with steering commands

Inverse Kinematics

Geometrical vs. Jacobian Approach

PROBLEM	steering and rotational slip cannot be
	distinguished since the rotational axis
	are identical

Consequence Jacobian approach not useable

Solution
Geometrical approach to determine the desired steering angles

Inverse Kinematics

Wheel Rolling Velocities

$$
\begin{array}{ll}
\text { GOAL } & \begin{array}{l}
\dot{x}_{d}=\text { desired } \\
\\
\text { forward velocity vector }
\end{array} \\
\text { GOAL } & \begin{array}{l}
\dot{\Phi}_{d}=\text { desired } \\
\text { heading angular rate }
\end{array} \\
\text { SOLUTION } & \begin{array}{l}
\text { Determine rolling velocities } \\
\text { by using the forward kinematics }
\end{array}
\end{array}
$$

Inverse Kinematics
 Wheel Rolling Velocities (Cont.)

The forward kinematics gives:

$$
\begin{gathered}
\dot{x}_{d}=R_{w} \cos (\beta) \cos \left(\Psi_{i}\right) \dot{\theta}_{i}+b_{i} d_{S_{1}} \cos (\beta) \eta_{i} \\
\dot{\Phi}_{d}=-\cos (\beta) \dot{\eta}_{i}
\end{gathered}
$$

Insert and solve by θ_{i} :

$$
\dot{\theta}_{i}=\frac{\dot{x}_{d}-d_{S_{1}} \dot{\Phi}_{d}}{R_{w} \underbrace{\cos (\beta) \cos \left(\Psi_{i}\right)}_{\text {crit. }}} \quad, \quad(i=1,2)
$$

(Note: Rolling Velocities for wheels 3,5 and 4,6 are obtained by the same way)

Inverse Kinematics

Steering Angles and Geometrical Approach

Procedure - Estimation of an instantaneous turn center based on the four non-steerable wheels

- Determination of the steering angles with this estimated center

Geometrical Approach

Inverse Kinematics

Steering Angles and Estimation of the turn center

Procedure - Extract the \dot{x} and $\dot{\Phi}$ components of the forward kinematics for each non-steerable wheel
\rightarrow desired quantities $\dot{x}_{d}, \dot{\Phi}_{d}$

- instantaneous turn radius r_{i}

$$
\begin{array}{ll}
& r_{i}=\frac{\dot{x}_{i}}{\dot{\Phi}_{i}} \\
& L_{i}=\mathbf{T}_{R, C_{i}} \cdot y_{C_{i}} \\
- & L_{R}=\frac{1}{4}\left(\cdot \sum_{i=3}^{6} L_{i}\right)
\end{array}
$$

Inverse Kinematics

Example for wheel 3 - The Turn Center Location

$$
\begin{aligned}
& \dot{\Phi}_{3}=-\dot{\eta}_{3}=\frac{\dot{\Phi}_{d}}{\cos \left(\sigma_{1}\right)} \\
& \dot{x}_{3}=R_{w} \cdot \dot{\theta}_{3}=\frac{\dot{x}_{d}-d_{S_{1}} \dot{\Phi}_{d}+a_{\rho_{1}} \dot{\rho}_{1} \sin \left(\gamma_{\rho_{1}}\right)}{\cos \left(\sigma_{1}\right)} \\
& r_{3}=\frac{\dot{x}_{3}}{\dot{\Phi}_{3}}=\frac{\dot{x}_{3}+a_{\rho_{1}} \dot{\rho}_{1} \sin \left(\gamma_{\rho_{1}}\right)}{\dot{\Phi}_{d}}-d_{S_{1}} \\
& L_{3}=\mathbf{T}_{R, D} \mathbf{T}_{D, \rho_{1}} \mathbf{T}_{\rho_{1}, A_{3}} \mathbf{T}_{A_{3}, C_{3}} \cdot \underbrace{\left[\begin{array}{llll}
0 & r_{3} & 0 & 1
\end{array}\right]^{T}}_{y_{C_{3}}}
\end{aligned}
$$

Inverse Kinematics

Example for wheel 3 (Cont.)

$$
L_{3}=\left[\begin{array}{c}
a_{A_{3}} \cos \left(\gamma_{\rho_{1}}+\gamma_{A_{3}}\right)+a_{\rho_{1}} \cos \left(\gamma_{\rho_{1}}\right) \\
\frac{\dot{x}+a_{\rho_{1}} \dot{\rho}_{1} \sin \left(\gamma_{\rho_{1}}\right.}{\dot{\Phi}_{d}} \\
-a_{A_{3}} \sin \left(\gamma_{\rho_{1}}+\gamma_{A_{3}}\right)-a_{\rho_{1}} \sin \left(\gamma_{\rho_{1}}\right) \\
1
\end{array}\right]
$$

Inverse Kinematics

The estimated turn center

$$
L_{R}=\left[\begin{array}{c}
\frac{a_{A_{3}}}{4} \sum_{i=3}^{6}\left(\cos \left(\Gamma_{i}\right)\right)+\frac{a_{\rho_{1}}}{2}\left(\cos \left(\gamma_{\rho_{1}}\right)+\cos \left(\gamma_{\rho_{2}}\right)\right) \\
\frac{\dot{x}_{d}}{\dot{\Phi}_{d}}+\frac{a_{\rho_{1}}}{2 \dot{\Phi}_{d}}\left(\dot{\rho}_{1} \sin \left(\gamma_{\rho_{1}}\right)+\dot{\rho}_{2} \sin \left(\gamma_{\rho_{2}}\right)\right) \\
-\frac{a_{A_{3}}}{4} \sum_{i=3}^{6}\left(\sin \left(\Gamma_{i}\right)\right)-\frac{a_{\rho_{1}}}{2}\left(\sin \left(\gamma_{\rho_{1}}\right)+\sin \left(\gamma_{\rho_{2}}\right)\right) \\
1
\end{array}\right]
$$

where

$$
\Gamma_{i}= \begin{cases}\sigma_{1}-\gamma_{C_{i}} & i=3,5 \\ \sigma_{2}-\gamma_{C_{i}} & i=4,6\end{cases}
$$

Inverse Kinematics

Steering Angle Calculation

Inverse Kinematics Steering Angle Calculation (Cont.)

Goal Steering Angles Ψ_{i}
Solution Geometrical Approach

$$
\begin{aligned}
& r_{i}=\mathbf{T}_{R, C_{i}}^{-1} \cdot L_{R} \\
& i \in 1,2 \\
& L_{R}=\text { estimated turn center } \\
& r_{i}=\text { turn center of wheel i }
\end{aligned}
$$

Inverse Kinematics

The Matrix $T_{R, C_{i}}^{-1}$

$$
T_{R, C_{i}}^{-1}=\left[\begin{array}{cccc}
\cos \left(\beta_{i}\right) & 0 & -\sin \left(\beta_{i}\right) & -a_{S_{i}} \\
0 & 1 & 0 & -d_{S_{i}} \\
\sin \left(\beta_{i}\right) & 0 & \cos \left(\beta_{i}\right) & -d_{A_{1}} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Note: Initial value for Ψ_{i} is set to zero.

Inverse Kinematics

The instantaneous turn center vector \vec{r}_{i}

$$
\begin{aligned}
& {\left[\begin{array}{l}
r_{x i} \\
r_{y i}
\end{array}\right]=} \\
& {\left[\begin{array}{c}
\frac{a_{A_{3}}}{4} \cdot \sum_{j=3}^{6} \cos \left(\beta_{i}+\Gamma_{j}\right)+\frac{a_{\rho_{1}}}{2}\left(\cos \left(\beta_{i}+\gamma_{\rho_{1}}\right)+\cos \left(\beta_{i}+\gamma_{\rho_{2}}\right)\right)-a_{S_{i}} \\
\frac{\dot{x}_{d}}{\dot{\Phi}_{d}}+\frac{a \rho_{1}}{2 \dot{\Phi}_{d}}\left(\dot{\rho}_{1} \sin \left(\gamma_{\rho_{1}}\right)+\dot{\rho}_{2} \sin \left(\gamma_{\rho_{2}}\right)\right)-d_{S_{i}}
\end{array}\right]}
\end{aligned}
$$

Note: Since the steering axis is along the z-axis, r_{i} is projected to the xy-plane.

Inverse Kinematics

The desired steering angles Ψ_{i}

$$
\tan \left(\Psi_{i}\right)=\frac{-\operatorname{sign}\left(r_{y i}\right) \cdot r_{x i}}{\left|r_{y i}\right|}
$$

leads to

$$
\Psi_{i}=\arctan \left(\frac{-\operatorname{sign}\left(r_{y i}\right) \cdot r_{x i}}{\left|r_{y i}\right|}\right) \quad, \quad i \in 1,2
$$

Inverse Kinematics

The Full Inverse Kinematic Solution

$$
\begin{gathered}
\Psi_{i}=\arctan \left(\frac{-\operatorname{sign}\left(r_{y i}\right) \cdot r_{x i}}{\left|r_{y i}\right|}\right) \\
\dot{\theta}_{i}=\frac{\dot{x}_{d}-d_{S_{1}} \dot{\Phi}_{d}}{R_{w} \cos (\beta) \cos \left(\Psi_{i}\right)} \quad, \quad i \in 1,2 \\
\dot{\theta}_{i}=\frac{\dot{x}_{d}-d_{S_{1}} \dot{\Phi}_{d}+a_{\rho_{1}} \sin \left(\gamma_{\rho_{1}}\right) \dot{\rho}_{1}}{R_{w} \cos \left(\sigma_{2}\right)} \quad, i \in 3,5 \\
\dot{\theta}_{i}=\frac{\dot{x}_{d}-d_{S_{1}} \dot{\Phi}_{d}+a_{\rho_{1}} \sin \left(\gamma_{\rho_{2}}\right) \dot{\rho}_{2}}{R_{w} \cos \left(\sigma_{2}\right)} \quad, i \in 4,6 \\
\hline
\end{gathered}
$$

Conclusions

- available methods only for flat surfaces \rightarrow this approach can be used for rough terrain
- rotation axis of slip and steering coincide \rightarrow the Jacobian approach is not applicable \rightarrow Geometrical Approach
- quite general approach \rightarrow easy modification for other kinematic configurations

