SystemVerilog for Synthesis
Introduction for Student’s Guidance

Prof. Dr. Matthias W. Fertig

Literatur

[[Sutherland, 2017] Stuart Sutherland.
RTL Modeling with SystemVerilog for Simulation and

Synthesis,
ISBN 9-781-5467-7634-5, 2017.

SystemVerilog Simulation and Synthesis
Verilog and SystemVerilog - A brief history

SystemVerilog enhancements

® Verilog too limited for complexity of typical IC designs
® Enhancements for modeling digital logic
® Enhancements for verifying very large and complex designs

® done by non-profit organization Accellera Systems Initiative
and outside |IEEE

e first release by Accellera in 2002 | IEEE Verilog 2001
(called Verilog++)

® Accellera SystemVerilog 3.1 is a set of extensions to
| IEEE 1364 — 2001 |

SystemVerilog Simulation and Synthesis
RTL and gate-level modeling

Gate-level models
e SystemVerilog utilizues gate-level primitives
® Digital logic gates approximate silicon implementation
e SystemVerilog provides built-in gate-level primitives
so called User Defined Primitives (UDPs)
® UDPs are defined in a truth table format

Syntax of gate-level primitives

<gate_type> <delay> <instance_name>(<outputs>,<inputs>)

SystemVerilog Simulation and Synthesis
RTL and gate-level modeling

Example: One-bit adder gate-level model

‘begin_keywords "1800-2012"
module gate_adder

(input wire a, b, ci,

output wire sum, co);

timeunit 1ns; timeprecision 100ps;
wire nl, n2, n3;

xor gl (n1, a, b);

xor #1.3 g2 (sum, nl, ci);

and g3 (n2, a, b);

and g4 (n3, nl, ci);

or #(1.5,1.8) gb (co, n2, n3);
endmodule: gate_adder
‘end_keywords

SystemVerilog Simulation and Synthesis

Register Transfer Level

Continuous assgnment

‘assign {co,sum} = a + b + ci

keyword

® Represents simple combinatorial logic

Works with vectors and bundles of data

A scalar signal is one bit wide

® A vector is a signal with more than one bit

concatenates signals and assigns according to the

signal order

is the add-operator

SystemVerilog Simulation and Synthesis

Register Transfer Level

Procedural blocks

‘always ‘, ‘always,comb ‘, ‘always,ff ‘ and ’ always_latch

® Encapsulates one or more lines of programming statements
® |nformation when the statements should be executed

® example for positive clock edge triggered logic

always_ff @ (posedge clk) begin

end

SystemVerilog Simulation and Synthesis

Gate-level modeling

Example: One-bit adder RTL model

‘begin_keywords "1800-2012"
module rtl_adder

(input logic a, b, ci,
output logic sum, co);
timeunit 1ns/1ns;

assign {co,sum} = a + b + ci;
endmodule: rtl_adder

‘end _keywords

SystemVerilog Simulation and Synthesis
Modeling for ASICS and FPGAs

The FPGA design flow

Front-End Back-End
Design Specification Block Mapping
RTL Modeling Place + Route
Functional Simulation Gate-level Simulation
RTL Synthesis Static Timing Analysis
Verification Device Programming

SystemVerilog Simulation and Synthesis

SystemVerilog Simulation

Best Practice Guideline

Use packages for shared declarations

and not the $unit declaration space.

SystemVerilog Simulation and Synthesis

SystemVerilog Simulation
Event regions

® simulators cannot schedule events in past time slots

® RTL models use the ‘ active event region| and

NBA event region ‘

Event scheduling flow

Active event region

- programming statements and operators —
- continous assignments

- blocking assignments

- nonblocking assignments (STEP 1, evaluate RHS)

¥ :

- nonblocking assgnments (STEP 2, update LHS)

NBA update region

SystemVerilog Simulation and Synthesis
SystemVerilog Simulation

Non-Blocking assignment <=

® used to model sequential logic

® Finite State Machines, latches, flip-flops
Example: 8-Bit D-Flip-Flop

‘begin_keywords "1800-2012"
module d_reg (input logic clock,
input logic [7:0] d,

output logic [7:0] q);
timeunit 1ns/1ns;

always @(posedge clock)

q <= d;

endmodule: d_reg

‘end_keywords

SystemVerilog Simulation and Synthesis
SystemVerilog Simulation
Example: 8-Bit D-Flip-Flop testbench

‘begin_keywords "1800-2012"
module test (input logic
clock,

output logic [7:0] d,
input logic [7:0] q);
timeunit 1ns/1ns;
initial begin

d =1;

#7 d = 2;

#10 d = 3;

#10 $finish;

end

endmodule: test

‘end _keywords

SystemVerilog Simulation and Synthesis

SystemVerilog Simulation

Example: 8-Bit D-Flip-Flop event scheduling

Simulation time and time slots
Ons 5ns 27ns
\ | .
\ [
Active events: Active events: Active events:
clk'=0 ck=1 $finish
d=1 d'=d
NBA events: NBA events: NBA events:
clk=clk’ g=d*

SystemVerilog Simulation and Synthesis

Example: Synthesis tool flow

Digital Synthesis

ASIC /| FPGA
Technology library

Constraints

Synthesis tools flow

SystemVerilog
RTL models

'

—

Synthesis
Compiler

l

Gate-Level

Netlist

Functional
Verification

Gate-Level
Simulation

SystemVerilog Simulation and Synthesis
Digital Synthesis

Synthesis compiler input information

* RTL | models]

o written by design engineer
o description of functional behaviour
o to be reaslized as ASIC or on FPGA

® technology

o for the target ASIC or FPGA

© synthesis | constraints |

o defined by design engineer
o compiler directives for placement, cell usage etc.

o timing, area and power requirements

SystemVerilog Simulation and Synthesis
Digital Synthesis

Synthesis compiler output information

® Gate-level

o list of components and wires (nets)
o components are standard cells
o EDIF, VHDL, Verilog-2001 or SystemVerilog format

o and | congestion | information

o derived from standard cell placements

° information

o obtained from standard cell numbers and electrics

° ’ timing‘ and ‘ clock —speed | information

o obtained from placement and routing, flip-flop timing
and static timing analysis

SystemVerilog Simulation and Synthesis
Digital Synthesis

SystemVerilog synthesis compilers

® Commercial synthesis compilers
o Cadence
o Mentor Graphics
o Synopsis

® Proprietary synthesis compilers
o Xilinx

o Intel (formerly Alterra)

Only a subset of the SystemVerilog language

is supported by synthesis compilers!

SystemVerilog Simulation and Synthesis
Digital Synthesis
Example: Constraints

Design constraints

N _ ouT!
——p Logic gates —p| FF —® Logic gates —

Timing constraints
® 1IN input arrival time relative to clock edge
® QUT required arrival time relative to clock edge

® QUT driver requirements (fan-out)

SystemVerilog Simulation and Synthesis

Lint and logic equivalence checkers
Lint checker
® check if RTL code meets synthesizable coding rules
® parse HDL source code and check against specific coding rules
® are configurable

® can add checks for specific coding guidelines

Logic equivalence checker
® analyze functionality of two models for logic equivalence
® compare versions of RTL models or gatelevel netlists

® compare RTL model and synthesis gatelevel netlist

after | Engineering Change Orders‘ (ECOs)

® one type of formal verification

Nets and Variables
Net types

Synthesizable net type
® data type must be , explicitely or inferred
® multiple drivers resolve according to semantic rules
® all net types model silicon behaviour w/ driver strength 0-7
® not all net types exist in ASIC or FPGA synthesis compilers
Non-Synthesizable net type

® luwire|, ‘pullO ‘ ‘pulll ‘ \wand \ \triand \ wor |, |trior |,
are not supported by all synthesis compilers

® uwire does not permit multiple drivers

® yand resolves 'wired and’, wor resolves 'wired or’,

Nets and Variables
Net types

Best Practice Guideline

Use

logic

data type to connect components with

single-driver signals and |wire| or [tri| net types

only if multiple drivers are allowed.

Nets and Variables
Net types

Example on inferred wire net declarations

module mixed rtl_gate_adder(

input a, // implicit net, 4-state

input logic b, // implicit net, 4-state

input reg ci, // implicit net, 4-state

output s, // implicit net, 4-state

output logic co); // implicit variable, 4-state
xor gl (nl, a, b); // undelcared nl, implicit wire net
xor g2 (s, n1, ci1);

and g3 (n2, a, b); // undeclared n2, wire net
assign n3 = nl1 & cl; // undeclared n3, wire net
always_comb begin co = n2 | n3; end

endmodule: mixed_rtl_gate_adder

Nets and Variables
Net types

Best Practice Guideline

Use

'default_net_type

as a pair of directives

to switch at beginning and back at end of

compilation unit.

Nets and Variables
Net types

Example on inferred uwire net declarations

’default net_type uwire;

module mixed rtl_gate_adder(

input a, // implicit net, 4-state

input logic b, // implicit net, 4-state

input reg ci, // implicit net, 4-state

output s, // implicit net, 4-state

output logic co); // implicit variable, 4-state

xor gl (nl, a, b); // undelcared nl, uwire net
xor g2 (s, nl, cl);
and g3 (n2, a, b); // undeclared n2, uwire net

assign n3 =

nl & c1; // undeclared n3, uwire net

always_comb begin co = n2 | n3; end

endmodule:

mixed_rtl_gate_adder

Nets and Variables

Port declarations

Combined style port lists

® puts full declaration of each port in the list parantheses

® each port declaration separated by comma

® similar ports can be declared by comma-separated list of
port names

e |EEE-SystemVerilog standard refers to combined-style as
ANSI C style

module alu(

input wire logic signed [31:0] a,b,
input wire logic [3:0] opcode,

output var logic signed [31:0] result,
output wire logic signed overflow,
output wire logic signed err);

Types and packages

SystemVerilog packages

Synthesis considerations

® tasks and functions to be defined

® no static variables

® synthesis will create copies of tasks and functions for
modules or interfaces

® automatic will allocate new storage on each function
or task call

® synthesis does not support variable declarations in packages

for the same storage considerations

RTL Expression Operators

Operator expression rules

Don't care optimisim

° ’X—optimism operators‘ generate a known result in case

of one or more operand bits X or Z

° ’X—pessimism operators‘ cause all bits X in case of

one or more operand bits X or Z

® optimism applies when simulation can correctly predict result

// operator optimism

assign a = 4°b01zx; // some bits z and x
assign b = 4°b1111; // all bits one
assign ¢ = a & b; // bitwise OR of a and b, ¢ = 1111

assign d = a | b; // bitwise AND of a and b, d = 11xx

RTL Expression Operators
Concatenate and replicate operators

Concatenate and replicate
® Concatenate and replicate operators join expressions
to form vector expressions

® Total sum of bits is sum of individual bits in the expression

° ’ 'Replicated contatenations"join expressions {m,n} and

replicate r{} a specific number of times, i.e. | {r{m,n}}

'Simple contatenations"join expressions only, i.e. | {m,n}

logic [3:0] a = 4°b0101;

logic [7:0] b = 8’hAB;

// {a,b} yields 12-bit value 12’h5AB
// {4’hF,a} yields 8-bit value 8’F5

// {8{2’b10}} yields 16-bit value 16°b1010101010101010

// {{4{al3]1}},a} yields 8-bit value 8’b00000101

RTL Expression Operators

Concatenate and replicate operators

Consider that ...

Concatenate and replicate operators
are synthesizable.

RTL Expression Operators

Conditional operator

Example: Multiplexed 4-Bit D-Register

// 4-bit register with multiplexed D input,
// using conditional operator.
‘begin_keywords "1800-2012"

module muxed_register

#(parameter WIDTH = 4) // register size

(input logic clk, // 1-bit input

input logic data select, // 1-bit input

input logic [WIDTH-1:0] d1, d2, // scalable in
output logic [WIDTH-1:0] g.out); // scalable out

timeunit 1ns; timeprecision 1ns;
always_ff @(posedge clk) g-out <= data_select 7 d1:d2;

endmodule: muxed register ‘end keywords

RTL Expression Operators

Conditional operator

Example: 4-Bit adder with tri-state output

module tri_state_adder
#(parameter WIDTH = 4) // register size

(input logic clk, // 1-bit input

input logic ena, // 1-bit input

input logic [WIDTH-1:0] a, b, // scalable in
output tri logic [WIDTH-1:0] out);

assign out = ena ? (a + b)

// tri-state net
JZ;
endmodule: tri_state_adder

e Conditional operator selects if out is assigned sum
or high-impedance z

° is literal value that sets all bits of an expression
to high-impedance

RTL Expression Operators

Reduction operators

Example: XOR parity checker

(input data_t data_in,
input clk,

input rstN,

output logic error);

always_ff @(posedge clk or negedge rstN) // async res
if (lrstN) error <= 0; // active-low reset

else error <= ~ {data in.parity bit, data_ in.data};

// reduction-XOR returns 1 if an odd number of bits
// are set in the combined data and parity_bit

endmodule: parity_checker

‘end_keywords

RTL Expression Operators

Set Membership Operator Rules
Set membership inside operator

® List members can change during simulation

® List members can be expressions like other variables or nets

always_comb begin

exp_spec <= exp inside {exp_inf, exp_zero};
end

Set of values can be stored in array

always_comb begin

is prime <= data inside {PRIMES};
end // PRIMES is array of prime numbers

® QOperator can be used in continuous assignments, i.e.

assign

assign is_prime = data inside {PRIMES};

RTL Expression Operators

Shift Operators

Best Practice Guideline

Let synthesis do its job!

Modern tools recognize barrel shifters etc.

There is no benefit to optimize at RTL-level.

Blocking assignment [=]
® Combinatorial logic

® Multiplexer, decoder,
comparators, ...

Continuous assignment

e Sequential logic

¢ Flip-Flops, Finite State
Machines, Registers,
Counters, Pipelines, ...

RTL Expression Operators

Assignment Operators

Example: Assignment Operators

typedef enum logic [1:0]
{ ANDOP, ... } op.t;

always_comb begin
out = in;
case (op)
AND_OP : res &= b;

endcase

end

RTL Expression Operators
Operator precedence

Three exceptions of Operator Associativity

«[7] [3] =]

Example 1

‘assign S=A+B-C;

is added to before is subtracted.

Example 2

‘assign C=A+ B *x 4;

Evaluate first before is added.

Example 3

‘assign C= (A + B) *x 4;

Evaluate first before is performed.

RTL Programming Statements

System Verilog procedural blocks

The programming statements discussed in this module are appropriate
for RTL modeling!

Procedural blocks
® Procedural block is a container for programming statements
® Procedural block controls when statements are executed, e.g.
rising edge
® |nitial procedure and always procedure

® |nitial procedure is verification-specific and not for synthesis
but can be used for $readmemb or $readmemh

® Always procedure is infinite loop to model continuous
behaviour of hardware

® Four types of always procedure: always, always_ff,
always_comb, always_latch

RTL Programming Statements

System Verilog procedural blocks

General purpose always procedure

+ [twee]

Tools do not know when the intended usage is for
synthesizable RTL models

Synthesis has coding restrictions to general always procedures

Specialized RTL always procedure

’always,ff ‘ ’always,comb ‘ ‘always,latch

Coding restrictions for synthesis ensure RTL and gatel-level
behaviour of ASIC or FPGA match

always_ff for modeling sequential logic, i.e. flip-flops
always_comb for modeling combinatorial logic, i.e. decoders

always_latch for modeling latched behaviour, i.e. auto
sensitivity list

RTL Programming Statements
System Verilog procedural blocks
Combinatorial logic sensitivity
® Programming statements to be evaluated whenever input
changes

® Explicit or inferred sensitivity list possible

° infers sensitivity list

’always@(a,b) S =A + B; // expl sensitivity list ‘

’always,comb S =A+ B; // impl sensitivity list ‘

Latched logic sensitivity

° ’always,latch‘ infers sensitivity list for logic blocks that can
store their logic state

always_latch
if(en) 0 <= S; // infers a latch as well
// implicit sensitivity list is (en, S)

RTL Programming Statements

Looping Statements
For loops

for (initial_ass; end_expr; step_ass) statement/statement group

® [nitial assignment executes once at beginning of loop

e End expression evaluated every iteration, loop terminates if
compare returns true

® Step assignment executed after every iteration, end expression
is evaluated then

e Statement/statement group executed every iteration, after
the end expression is evaluated

parameter N = 6;

logic [N-1:0] a, b, y;

always_comb begin

for(int i=0; i<N; i++) y[i] = al[i]l ~ b[(N-1)-i];
end

RTL Programming Statements

Looping Statements

For loop synthesis

® Synthesis compilers perform a loop unrolling

always_comb begin
y[0] = a[0] ~ b[3];
y[1]1 = a[1] =~ b[2];

y[2] = a[2] "~ b[1];
y[3] = al3] "~ b[0];
end

® Number of iterations must be a fixed number so that
synthesis can unroll the loop

® For loops are of advantage for large bus assignments to reduce
code length

Intentional and unintentional latches
Modeling Memory

Synthesis compilers will infer a latch to match simulation behaviour of
value retention. Latches ensure that gatel-level logic meets simulation
behaviour.

Unintentional latch inference (2)

® |nadvertent latches in state machine models for unnused
states (A) or one-hot encoding (B)

A. B.

always_comb begin always_comb begin
case (state) case (1°b1)
2°b00: q = S0; state[0]: q = S0;
2°b01: q = Si; state[1]: q = Si;
2°b10: q = S2; state[2]: q = S2;
endcase endcase

end end

Intentional and unintentional latches
Modeling Memory

Option 1 - Fully implemented vs. reduced decision logic

¢ Fully implemented means all states decoded, i.e. 2°b11 in (A)

Reduced decision logic removes logic for 2°b11 from (A)

Unwanted behaviour if logic hazards/glitches causing 2°b11

® Design more robust with fully specified decision logic

A.
always_comb begin
case (state)

2’b00: q = S0;
2°b01: q = S1;
2°b10: q = S2;

default: q = ERR;
endcase
end

B.

always_comb begin
case (1’b1)
state[0]: q = SO;
state[1]: q = Si;
state[2]: q = S2;
default: q = ERR;
endcase

end

Intentional and unintentional latches

Modeling Memory

Default branch latch avoidance (Option 1)

start —>

&
(. ()

typedef enum logic [2:0]
{ID=3"b000, RY=3’b001,
ST=3’b011, GO=3’b111l}
states_t;

states_t state, next;

always_comb begin

case (state)

ID : blue = RY;

RY : blue = ST;

ST : blue = GO;

GO : blue = RY;
default: mnext = ID;
endcase

end

// NO inferred latches
// for next!

