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Cathegorization of problems

To answer the question of what method is best for solving a
problem requires a classification of problems.

Problems are categorized by the

• solution region R

• equations describing the
problem

• boundary conditions on S

These items define a problem
uniquely.

Figure: Solution region R with
boundary S . (Sadiku 2009, p.15)
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When should finite differences be applied?

It is very rarely in real applications that an analytic solution can be
found. The analytic approach fails if

• the PDE is not linear and cannot be linearized without
affecting the result

• the PDE is supposed to be solved in a complex region

• the boundary conditions are of mixed type

• the boundary conditions are time-dependent

• the medium is inhomogeneous or anisotropic

Problems with such complexity require numerical methods.

The methods of finite differences is one of the most frequently
used and more generally applicable than any other method.
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Common grid patterns used in finite difference methods

Figure: Grid patterns. a) rectangular grid, b) sjew grid, c) triangular grid,
d) circular grid. (Sadiku p.120)
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Finite difference of a first order approximation

Figure: Estimates for the derivative of f (x) and P using forward,
backward, and central differences (Sadiku p.121)
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First order center difference approximation

The center difference approximation for the first order derivative of
f and a dependent variable x at a point P is obtained from

f ′(x) ≈ f (x0 +4x)− f (x0 −4x)

24x

where the central-difference is obtained from the arc AB.

Second order center difference approximation

The center difference approximation for the second order derivative
of f and a dependent variable x at a point P is obtained from

f ′′(x) ≈ f (x0 +4x)− 2f (x0) + f (x0 −4x)

(4x)2

where the center difference is obtained from the arc AB.
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Linearity

The linearity assumption holds for all systems when then super-
position property is obeyed for all input functions p and q as well
as all complex constants a and b. Assuming a, for the moment not
necessarily defined, operator or system S, the system is said to be
linear if

S(ap + bq) = a · S(p) + b · S(q)

Example-1: Is f (x) = 3x a linear function? Yes,

f (ap + bq) = 3(ap + bq) = a(3p) + b(3q) = af (p) + bf (q).

Example-2: Is f (x , y) = 3x + 2y a linear function? Yes,
f (ap+bq, ap+bq) = 3(ap+bq)+2(ap+bq) = af (p, q)+bf (p, q)

Example-3: Show that f (x) = x2 is not a linear function.



c© Prof. Dr. Matthias W. Fertig (7/20)

Fourier optics
Systems

Invariance

A system S is called invariant if the response of S at a time t on
an excitation applied at time t ′ only depends on the time difference
t − t ′. Electrical networks composed of fix resistors, capacitors and
inductors are time-invariant as the properties of the components
(ideally) do not change over time.

Similar to the time-invariance, an optical system is said to be
space-in-variant (isoplanatic), if the response of the system S at
a location r′ on an excitation at a location r only depends on the
distance r − r′. For an invariant system, the superposition integral
takes on the form of the convolution integral, where u(x , y) is
the excitation and h(x , y) the spatial impulse response.

u′(x , y) =

∫ ∫ ∞
−∞

u(x ′, y ′) · h(x − x ′, y − y ′) dx ′ dy ′
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Coherency

Incoherent systems are like AM radio (amplitude modulation).
The information is encoded in the amplitude (e.g. turning the light
on/off) and the receiver, e.g. a photo diode, has to measure the
intensity to decide upon the encoded information.

Coherent systems are like FM radio (frequency modulation). The
information is encoded in the property of the signal, i.e. phase,
amplitude and frequency of the field. The receiver is much more
complicated and the signal has to provide some coherency, i.e.
phase and frequency relation.

In this sense, a monochromatic wave, i.e. a wave of one frequency,
is perfectly coherent. Sunlight or the light coming from a light
bulb, which evolves from uncorrelated oscillators, are uncorrelated
sources.
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The Dirac delta function

Figure: Hecht p.527

δ(x−x0) =

{
0 x 6= x0
∞ x = x0

A ·
∞∫
−∞

δ(x) dx = A · 1

∞∫
−∞

f (x) · δ(x−0) dx = f (0)

∞∫
−∞

f (x) · δ(x−x0) dx = f (x0)
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One-Dimensional Fourier Transformation

According to the Fourier theorem, one-dimensional periodic
function f (x) can be expressed as a linear combination of harmonic
functions

f (x) =
1

π

 ∞∫
0

A(k) cos kx dk +

∞∫
0

B(k) sin kx dk


where k are the angular spatial frequencies. The factors

A(k) =

∞∫
−∞

f (x) cos kx dx B(k) =

∞∫
−∞

f (x) sin kx dx

determine the weights for the respective sine and cosine
transforms. In a complex representation F (k) = A(k) + jB(k).
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Spatial frequency and propagation vector

Figure: (Source: Optics, E.
Hecht, p.522)
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Finite difference approximation of parabolic PDEs

The approximation is only stable and accurate for 0 < r ≤ 1/2.
For r = 1/2, the explicit equation on page 7 simplifies to

Φ(i , j + 1) =
1

2
[Φ(i + 1, j) + Φ(i − 1, j)]

and the computational molecule is shown in the right figure on
page 8.

An implicit formula, proposed by Crank and Nicholson in 1974 is
valid for all finite values of r , where the second order space deri-
vative in x is replaced by the average of the center difference for-
mulas on the j-th and (j + 1)-th time rows.
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Crank-Nicholson Algorithm (Crank and Nicholson, 1974)

The implicit formula derives three unknown values of Φ (circles)
from three known values of Φ (rectangles). For nodes j = 0 and
i = 1, 2, ..., n This results in n equations for n unknowns and simi-
lar for j = 1 and so forth. The method allows a much larger time
step 4t and is stable for all finite r .

Figure: Computational molecule for Crank Nicholson method: a) for
finite values or r , b) for r = 1. (Sadiku p.125)
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Wave propagation

Φxx = Φtt (Wave Equation)

Solve the wave equation in the region 0 < x < 1 for t ≥ 0,
considering the boundary conditions

Φ(0, t) = Φ(1, t) = 0

and the initial conditions

Φ(0, t) = sinπx Φt(x , 0) = 0

.

(Remarks: Φtt = ∂2Φ
∂t2 , Φxx = ∂2Φ

∂x2 and Φt = ∂Φ
∂t )
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Finite difference approximation of the wave equation

Using the explicit finite difference scheme introduced on page 16
and with r = 1, the finite difference equation is

Φ(i , j + 1) = Φ(i − 1, j) + Φ(i + 1, j)− Φ(i , j − 1) , j ≥ 1

For j = 0, the boundary condition yields

Φt =
Φ(i , 1) − Φ(i ,−1)

24t
= 0

which gives the expression Φ(i , 1) = Φ(i ,−1). Inserting this
condition into the finite difference equation and with v = r = 1
and 4t = 4x

Φ(i , 1) =
1

2
[ Φ(i − 1, 0) + Φ(i + 1, 0) ]
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Analytic solution of the wave equation

Without further explanation and analysis, the analytic solution of
the wave equation is

Φ(x , t) = sin(πx) · cos(πt)

This solution can be used to verify the accuracy of the finite
difference method.

Implementation

Implement the algorithm, e.g. Matlab, C/C++, Java ...
and verify the accuracy against the analytic solution.
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Roundoff and discretization errors

Figure: Error as a function of the mesh size. (Sadiku p.143)
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Finite difference approximation of Maxwell’s curl equations

The Finite Difference Time Domain (FDTD) method is a conven-
ient tool for wave scattering problems. The FDTD method has
been introduced by Yee in 1966. It was then developed by Tavlove
and others.

The method evolved from a direct/rigorous solution of the Maxwell
equations using finite difference schemes in an interleaved half-step
solution with respect to space and time and as an initial value pro-
blem. The central equations are Maxwell’s curl eq-uations, where
the interactions of the electric and magnetic field components in
an isotropic medium are

∇× E = −µ∂H

∂t
∇×H = σE− ε∂E

∂t
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Yee’s unit cell

Figure: Positions of the field components in a unit cell of the Yee lattice.
(Source: Numerical Techniques in Electromagnetics, p.161, Sadiku 2009)
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Programming aspects of the FDTD
Performance considerations

FDTD Flow
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The Helmholtz equation with plane waves

Using plane waves of the form u(r)=U0 · e jk·r−ω·t in the partial
differential wave equation yields the Helmholtz equation(

∇+ k2
)
· u(r) = 0

with k2 = (n · ω/c)2. From transversality and |k |2 = k2
x + k2

y + k2
z

the vector components of k are dependent. This yields the express-
ion for kz

kz = ±
√(n · ω

c

)2
−k2
⊥ = ±

√
(n · k0)2−k2

⊥ = ±2π

√
(n · ν0)2−ν2

⊥

with ν2
⊥ = ν2

x + ν2
y . Signs indicate a propagation in the positive or

negative direction of the propagation vector. At boundaries, k⊥ is
maintained and kz changes with 4n.
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Transformation of spatial frequencies at a boundary

Figure: Goodman p.32
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Propagating and evanescent plane waves

The solution for kz provides two different type of solutions, where-
of one is connected to propagating and one to so called evanescent
waves. The two soltions of the square root are

|k⊥| ≤
nω

c
propagating waves

|k⊥| >
nω

c
evanescent waves

where in case of |k⊥| = n · ω/c , the wave propagates perpendicular
to the z-axis, the selected axis of propagation according to the pro-
pagator equation on page 11. In case of evanescent waves, P
becomes real-valued and for a distance 4z equal to

Pev = e−4z·
√

k2
⊥−( nω

c )
2
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Evanescent waves

In case of |k⊥| > n · ω/c , the propagator becomes a real-valued
expo- nential function, which decays exponentially along the z-axis.

Pev (k⊥, z) = e j ·z·
√

k2
⊥−( nω

c )
2

The entire plane evanescent wave is then composed from the
evanes- cent propagator Pev multiplied by the perpendicular wave
component, as defined by the spatial frequency k⊥ = 2πν⊥

uev (r⊥, z) = e j ·k⊥·r⊥ · e j ·z·
√

k2
⊥−( nω

c )
2

where |2πν⊥| > nω
c . The rate of decay depends on the square

root and the absolute reflect that there are positive and negative
evanescent frequencies.
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Expansion of plane wave components

Inserting the propagator P(k⊥, z) into equation 1 and 1, the
propa- gation of plane wave components along the z-axis over a
distance z is obtained from the inverse Fourier transformation

u(r⊥, z) = F−1 {U(k⊥) · P(k⊥, z)}

where U(k⊥) = F {u(r⊥, 0)}. In case of homogeneous media,
the calcu- lation provides the exact result, called the plane wave
decomposition. According to the convolution theorem, the
corresponding expression in the space domain is

u(r⊥, z) = u(r⊥, 0) ∗ F−1 {P(k⊥, z)}

This is the convolution kernel in the space domain for propagat-
ion F−1 {P(k⊥, z)}.
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Sampling Theorem and Nyquist frequency

The sampling or Nyquist theorem states that a signal with a ma-
ximum frequency νmax in its spectrum needs to be sampled with a
sampling frequency νs > 2 · νmax .

For a given sampling freqency νs , the Nyquist frequency νN=νs/2
gives the highest eligible frequency in the spectrum to reconstruct
signals without aliasing, i.e. overlap of base- and high-order bands.

The Nyquist condition is
ν < νN

The spectrum of a signal has to be band-limited to the Nyquist
frequency to avoid distortions in the spatial domain from aliasing.
Such band limitation filters are called anti-aliasing filters.



c© Prof. Dr. Matthias W. Fertig (27/30)

Silicon Photonics Laboratory
Beam Propagation Method

Split Step Propagation Scheme

The basic concept of the Split Step Propagation Scheme is the
separa- tion of the refractive index into an average component n
and a variation from the average 4n.

With this scheme, a propagation through homogeneous medium n
in the spatial frequency domain is combined with the phase correct-
ion from deviations to the average 4n in the spatial domain.

A fundamental problem arising from this concept is caused by
the situation that plane wave components are only available in the
frequency or Fourier domain and the corresponding plane wave
components propagate in a medium with average refractive index
while the phase correction needs to consider the spatial distribution
of the refractive index and thus needs to be performed in the space
domain where no spatial frequencies are available.
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Propagation in inhomogeneous medium

In case of inhomogeneous media, a propagating wave traverses
regions of different refractive index, n(z) 6= n(z +4z).

The Wave Propagation Method (WPM) derives the field distri-
bution of a propagating wave in a two- or three-dimensional system
from a plane wave decomposition of the incident wave, Snell’s law
and the Fresnel amplitude coefficients, which can be reformulated
for spatial frequencies.

Inhomogeneities in the refractive indes cause a transformation in
the z-component of the spatial frequency vector and a transforma-
tion of amplitudes. The Wave Propagation Method does not apply
a split-step propagation scheme as for example the Beam Propa-
gation Method.



c© Prof. Dr. Matthias W. Fertig (27/30)

Silicon Photonics Laboratory
Wave Propagation Method

Wave Propagation Scheme

The fundamental limitation of all flavours of the Beam Propagation
Method, even with extensions to wide angle propagation is com-
pletely eliminated by the Wave Propagation Scheme.

The Wave Propagation Scheme (Brenner and Singer, 1993) de-
rives the field distribution of a field propagated through inhomoge-
neous medium from a superposition of plane waves, considering
the spatial distribution of the refractive index without approximat-
ion like in the Split Step Scheme.

The first step of the Wave Propagation Scheme is identical to the
Split Step Scheme, the Fourier transformation of the incident field
distribution.

U(k⊥) = F {u(r⊥)}
where the Fourier coefficients U correspond to amplitudes of plane
waves propagating at the corresponding spatial frequency.
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Wave Propagation Scheme

All plane wave components in the spectrum of the incident field
propagate through the refractive index distribution n(r⊥) and the
field at a location r⊥ at z = i · dz + dz = (i + 1) · dz after a pro-
pagation distance dz = Z/nz is obtained from a field distribution
at z = i · 4z = i · dz

u(r⊥, z +4z) =
1

A

∫
k⊥

∫
U(k⊥, z) · P(k⊥, r⊥,4z) dk⊥

where A = X · Y and with the Wave Propagation Scheme, the
propagator P depends on the spatial frequency k⊥ and space r⊥.

P(k⊥, r⊥,4z) = e j4z·
√

(n(r⊥)·k0)2−k2
⊥
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Vector Wave Propagation

Scalar methods cannot simulate vectorial characteristics of electro-
magnetic waves. This is a significant limitation for wide angles as
the amplitudes of TE- (S-) and TM- (P-) polarized waves show
characteristic behaviour in case of inhomogeneities as described by
the Fresnel amplitude coefficients.

The Vector Wave Propagation Method extends the Wave Pro-
pagation Method by the full vector geometry at interfaces. The
amplitudes of TE- and TM-polarized fractions of waves are scaled
by the Fresnel coefficients of transmission in the one-directional
case.

The bi-directional Vector Wave Propagation Method follows a spe-
cial scheme to consider transmitted and reflected vector waves from
vector geometry and Fresnel amplitude coefficients of reflection.
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Spectrum of vector waves

The propagating wave in the Vector Wave Propagation Scheme is
a vector

U(k⊥) =


Ux(k⊥)

Uy (k⊥)

Uz(k⊥)


obtained from two-dimensional Fourier transformations of each
vector component in the tree-dimensional spatial field distribution
vector u(r⊥)

U(k⊥) =
1

A

∫
A

∫
u(r⊥) · e−j ·k·r dr⊥
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Propagation of vector waves

A plane wave component W propagating a distance 4z is then
obtained from a plane wave expansion of U over the aperture A
from

W(k⊥, r⊥,4z) = U(k⊥) · e jk⊥·r⊥+kz ·4z

where kz is a space and frequency dependent quantity as already
introduced in the Wave Propagation Method.

In case of a homogeneous medium, no boundary affects the direct-
ion of k and W is only affected by a phase shift and the plane wa-
ve decomposition is applicable. In case of an inhomogeneities, the
vector geometry at boundaries is relevant, where U is split into a
reflected vector Ur and a transmitted vector Ut and into a TE-/S-
and TM-/P- mode as demanded by laws of reflection and refract-
ion.
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Implementation (2/2)

The spatial distribution is then obtained from four sums

ui+1 =
1

X · Y
·
∑
p

∑
q

∑
l

∑
m

Ti,i+1 · Ui · Pi+1

Tt,i,i+1(p, q, l, m) =
1

k2⊥

[
k2y tte + k2x ttm kxky (ttm − tte)

kxky (ttm − tte) k2x tte + k2y ttm)

]

Ui(p, q) = FFT2D( ui(l, m) )

Pi+1(p, q, l, m) = e j·dz·
√

n2i+1(l,m)·k20 − ((p/X)2+(q/X)2)

where p, l∈{−nx/2, .., nx/2−1}, q, m∈{−ny/2, .., ny/2−1} and
i∈{0, .., nz−1}.


